Gender classification from periocular NIR images using fusion of CNNs models

Juan Tapia, C. Carlos Aravena

Resultado de la investigación: Contribución a los tipos de informe/libroContribución a la conferencia

10 Citas (Scopus)

Resumen

Gender classification from periocular images is a challenging topic. Previous algorithms have focused primarily on the use of texture features and not much research has been done on applying Convolutional Neural Networks (CNN) to this task. In this work we trained a small convolutional neural network for the left and right eyes, and more importantly, studied the effect of merging those models and compare it against the model obtained by training a CNN over the fused left-right eye images. We show that the network benefits from this model merging approach, and becomes more robust towards occlusion and low resolution degradation, outperforming the results of using a single CNN model for the left and right set of images. Ex-periments done over a database of near-infrared periocular images show that our CNN model exhibits competitive performance compared to other state-of-the-art methods.

Idioma originalInglés
Título de la publicación alojada2018 IEEE 4th International Conference on Identity, Security, and Behavior Analysis, ISBA 2018
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas1-6
Número de páginas6
Volumen2018-January
ISBN (versión digital)9781538622483
DOI
EstadoPublicada - 9 mar 2018
Evento4th IEEE International Conference on Identity, Security, and Behavior Analysis, ISBA 2018 - Singapore, Singapur
Duración: 11 ene 201812 ene 2018

Conferencia

Conferencia4th IEEE International Conference on Identity, Security, and Behavior Analysis, ISBA 2018
PaísSingapur
CiudadSingapore
Período11/01/1812/01/18

Áreas temáticas de ASJC Scopus

  • Redes de ordenadores y comunicaciones
  • Visión artificial y reconocimiento de patrones
  • Seguridad, riesgos, fiabilidad y calidad
  • Psicobiología
  • Ciencias sociales (miscelánea)

Huella Profundice en los temas de investigación de 'Gender classification from periocular NIR images using fusion of CNNs models'. En conjunto forman una huella única.

  • Citar esto

    Tapia, J., & Aravena, C. C. (2018). Gender classification from periocular NIR images using fusion of CNNs models. En 2018 IEEE 4th International Conference on Identity, Security, and Behavior Analysis, ISBA 2018 (Vol. 2018-January, pp. 1-6). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ISBA.2018.8311465