Functional determinants, generalized BTZ geometries and Selberg zeta function

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

15 Citas (Scopus)

Resumen

We continue the study of a special entry in the AdS/CFT dictionary, namely a holographic formula relating the functional determinant of the scattering operator in an asymptotically locally anti-de Sitter space to a relative functional determinant of the scalar Laplacian in the bulk. A heuristic derivation of the formula involves a one-loop quantum effect in the bulk and the corresponding sub-leading correction at large N on the boundary. We presently explore the formula in the background of a higher dimensional version of the Euclidean BTZ black hole, obtained as a quotient of hyperbolic space by a discrete subgroup of isometries generated by a loxodromic (or hyperbolic) element consisting of dilation (temperature) and torsion angles (twist). The bulk computation is done using heat-kernel techniques and fractional calculus. At the boundary, we acquire a recursive scheme that allows us to successively include rotation blocks in spacelike planes in the embedding space. The determinants are compactly expressed in terms of an associated (Patterson-)Selberg zeta function and a connection to quasi-normal frequencies is discussed.

Idioma originalInglés
Número de artículo205402
PublicaciónJournal of Physics A: Mathematical and Theoretical
Volumen43
N.º20
DOI
EstadoPublicada - 2010

Áreas temáticas de ASJC Scopus

  • Física estadística y no lineal
  • Estadística y probabilidad
  • Modelización y simulación
  • Física matemática
  • Física y Astronomía General

Huella

Profundice en los temas de investigación de 'Functional determinants, generalized BTZ geometries and Selberg zeta function'. En conjunto forman una huella única.

Citar esto