Frobenius-Chern-Simons gauge theory

Roberto Bonezzi, Nicolas Boulanger, Ergin Sezgin, Per Sundell

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

11 Citas (Scopus)


Given a set of differential forms on an odd-dimensional noncommutative manifold valued in an internal associative algebra H, we show that the most general cubic covariant Hamiltonian action, without mass terms, is controlled by an Z2-graded associative algebra F with a graded symmetric nondegenerate bilinear form. The resulting class of models provide a natural generalization of the Frobenius-Chern-Simons model (FCS) that was proposed in (arXiv: 1505.04957) as an off-shell formulation of the minimal bosonic fourdimensional higher spin gravity theory. If F is unital and the Z2-grading is induced from a Klein operator that is outer to a proper Frobenius subalgebra, then the action can be written on a form akin to topological open string field theory in terms of a superconnection valued in H⊗. We give a new model of this type based on a twisting of C[Z2 ×Z4], which leads to selfdual complexified gauge fields on AdS4. If F is 3-graded, the FCS model can be truncated consistently as to contain no zero-form constraints on-shell. Two examples thereof are a twisting of C[(Z2)3] that yields the original model, and the Clifford algebra Cℓ2n which provides an FCS formulation of the bosonic Konstein-Vasiliev model with gauge algebra hu(4n-1, 0) .

Idioma originalInglés
Número de artículo055401
PublicaciónJournal of Physics A: Mathematical and Theoretical
EstadoPublicada - 4 ene 2017

Áreas temáticas de ASJC Scopus

  • Física estadística y no lineal
  • Estadística y probabilidad
  • Modelización y simulación
  • Física matemática
  • Física y astronomía (todo)


Profundice en los temas de investigación de 'Frobenius-Chern-Simons gauge theory'. En conjunto forman una huella única.

Citar esto