### Resumen

Given a set of differential forms on an odd-dimensional noncommutative manifold valued in an internal associative algebra H, we show that the most general cubic covariant Hamiltonian action, without mass terms, is controlled by an Z_{2}-graded associative algebra F with a graded symmetric nondegenerate bilinear form. The resulting class of models provide a natural generalization of the Frobenius-Chern-Simons model (FCS) that was proposed in (arXiv: 1505.04957) as an off-shell formulation of the minimal bosonic fourdimensional higher spin gravity theory. If F is unital and the Z_{2}-grading is induced from a Klein operator that is outer to a proper Frobenius subalgebra, then the action can be written on a form akin to topological open string field theory in terms of a superconnection valued in H⊗. We give a new model of this type based on a twisting of C[Z_{2} ×Z_{4}], which leads to selfdual complexified gauge fields on AdS_{4}. If F is 3-graded, the FCS model can be truncated consistently as to contain no zero-form constraints on-shell. Two examples thereof are a twisting of C[(Z_{2})^{3}] that yields the original model, and the Clifford algebra Cℓ^{2n} which provides an FCS formulation of the bosonic Konstein-Vasiliev model with gauge algebra hu(4^{n-1}, 0) .

Idioma original | Inglés |
---|---|

Número de artículo | 055401 |

Publicación | Journal of Physics A: Mathematical and Theoretical |

Volumen | 50 |

N.º | 5 |

DOI | |

Estado | Publicada - 4 ene 2017 |

### Áreas temáticas de ASJC Scopus

- Física estadística y no lineal
- Estadística y probabilidad
- Modelización y simulación
- Física matemática
- Física y astronomía (todo)

## Huella Profundice en los temas de investigación de 'Frobenius-Chern-Simons gauge theory'. En conjunto forman una huella única.

## Citar esto

*Journal of Physics A: Mathematical and Theoretical*,

*50*(5), [055401]. https://doi.org/10.1088/1751-8121/50/5/055401