Resumen
It is well known that in finite graphs, large complete minors/topological minors can be forced by assuming a large average degree. Our aim is to extend this fact to infinite graphs. For this, we generalize the notion of the relative end degree, which had been previously introduced by the first author for locally finite graphs, and show that large minimum relative degree at the ends and large minimum degree at the vertices imply the existence of large complete (topological) minors in infinite graphs with countably many ends.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 697-707 |
Número de páginas | 11 |
Publicación | SIAM Journal on Discrete Mathematics |
Volumen | 27 |
N.º | 2 |
DOI | |
Estado | Publicada - 2013 |
Áreas temáticas de ASJC Scopus
- Matemáticas General