First-order Lagrangian and Hamiltonian of Lovelock gravity

Pablo Guilleminot, Félix Louis Julié, Nelson Merino, Rodrigo Olea

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

Resumen

Based on the insight gained by many authors over the years on the structure of the Einstein–Hilbert, Gauss–Bonnet and Lovelock gravity Lagrangians, we show how to derive-in an elementary fashion-their first-order, generalized ‘Arnowitt–Deser–Misner’ Lagrangian and associated Hamiltonian. To do so, we start from the Lovelock Lagrangian supplemented with the Myers boundary term, which guarantees a Dirichlet variational principle with a surface term of the form πi jδhi j, where πi j is the canonical momentum conjugate to the boundary metric hi j. Then, the first-order Lagrangian density is obtained either by integration of πi j over the metric derivative ∂whi j normal to the boundary, or by rewriting the Myers term as a bulk term.

Idioma originalInglés
Número de artículo105004
PublicaciónClassical and Quantum Gravity
Volumen38
N.º10
DOI
EstadoPublicada - may 2021

Áreas temáticas de ASJC Scopus

  • Física y astronomía (miscelánea)

Huella

Profundice en los temas de investigación de 'First-order Lagrangian and Hamiltonian of Lovelock gravity'. En conjunto forman una huella única.

Citar esto