Explicit Modeling of Brain State Duration Using Hidden Semi Markov Models in EEG Data

NJ Trujillo-Barreto, DA Galvez, A Astudillo, W El-Deredy

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

3 Citas (Scopus)

Resumen

We consider the detection and characterization of brain state transitions based on ongoing electroencephalography (EEG). Here, a brain state represents a specific brain dynamical regime or mode of operation that produces a characteristic quasi-stable pattern of activity at the topography, sources, or network levels. These states and their transitions over time can reflect fundamental computational properties of the brain, shaping human behavior and brain function. The hidden Markov model (HMM) has emerged as a useful tool for uncovering the hidden dynamics of brain state transitions based on observed data. However, the limitations of the Geometric distribution of states' durations (dwell times) implicit in the standard HMM, make it sub-optimal for modeling brain states in EEG. We propose using hidden semi Markov models (HSMM), a generalization of HMM that allows modeling the brain states duration distributions explicitly. We present a Bayesian formulation of HSMM and use the variational Bayes framework to efficiently estimate the HSMM parameters, the number of brain states, and select among candidate brain state duration distributions. We assess HSMM performance against HMM on simulated data and demonstrate that the accurate modeling of state durations is paramount for making reliable inference when the task at hand requires accurate model predictions. Finally, we use actual resting-state EEG data to illustrate the benefits of the approach in practice. We demonstrate that the possibility of modeling brain state durations explicitly provides a new way for investigating the nature of the neural dynamics that generated the EEG data.

Idioma originalInglés
Páginas (desde-hasta)12335-12355
Número de páginas21
PublicaciónIEEE Access
Volumen12
DOI
EstadoPublicada - 2024

Áreas temáticas de ASJC Scopus

  • Ingeniería General
  • Ciencia de la Computación General
  • Ciencia de los Materiales General

Huella

Profundice en los temas de investigación de 'Explicit Modeling of Brain State Duration Using Hidden Semi Markov Models in EEG Data'. En conjunto forman una huella única.

Citar esto