Explainable Prediction of Academic Failure Using Bayesian Networks

Juan Tarbes, Pamela Morales, Marcos Levano, Pablo Schwarzenberg, Orietta Nicolis, Billy Peralta

Producción científica: Contribución a los tipos de informe/libroContribución a la conferenciarevisión exhaustiva

Resumen

Currently, academic dropout is a crucial problem of higher education institutions in Chile due to the high social and economic costs that it entails. Usually, dropout prediction is performed using computational methods analyzing the student's personal information as well as their academic indicators during their studies, which require a period of time to know them. Moreover, this event is highly correlated to the academic failure of several key courses. An attractive alternative is to apply an initial test to achieve this prediction without requiring completion of the typical study periods. In this work we propose the use of Bayesian networks to make the explainable predictions of academic failure from an initial test considering the incorporation of knowledge from experts in educational management in the computational model. In particular, different configurations of Bayesian network models are applied to first-year engineering students at a Chilean university during the year 2019. The results indicate that this approach generally obtains 85% accuracy where the Bayesian networks show complex relationships between the variables. This work shows that the Bayesian network model can eventually detect the students most likely to drop out at the beginning of their studies. As future work, we plan to incorporate external variables as the student socio-economic data.

Idioma originalInglés
Título de la publicación alojada2022 IEEE International Conference on Automation/25th Congress of the Chilean Association of Automatic Control
Subtítulo de la publicación alojadaFor the Development of Sustainable Agricultural Systems, ICA-ACCA 2022
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781665494083
DOI
EstadoPublicada - 2022
Evento2022 IEEE International Conference on Automation/25th Congress of the Chilean Association of Automatic Control, ICA-ACCA 2022 - Virtual, Online, Chile
Duración: 24 oct. 202228 oct. 2022

Serie de la publicación

Nombre2022 IEEE International Conference on Automation/25th Congress of the Chilean Association of Automatic Control: For the Development of Sustainable Agricultural Systems, ICA-ACCA 2022

Conferencia

Conferencia2022 IEEE International Conference on Automation/25th Congress of the Chilean Association of Automatic Control, ICA-ACCA 2022
País/TerritorioChile
CiudadVirtual, Online
Período24/10/2228/10/22

Áreas temáticas de ASJC Scopus

  • Agronomía y cultivos
  • Gestión y sistemas de información
  • Energías renovables, sostenibilidad y medio ambiente
  • Control y optimización

Huella

Profundice en los temas de investigación de 'Explainable Prediction of Academic Failure Using Bayesian Networks'. En conjunto forman una huella única.

Citar esto