Evaluation of a Fintech Sales Synthetic Data Generation Model Using a Generative Adversarial Network

Felipe A. Lopez, Marcia Duran-Riveros, Sebastian Maldonado-Duran, David Ruete, Giannina Costa, Jairo R. Coronado-Hernandez, Gustavo Gatica

Producción científica: Contribución a los tipos de informe/libroContribución a la conferenciarevisión exhaustiva

Resumen

The need for more and better information for decision making is fundamental in modern organizations, especially in the financial industry. One type of this information is time series, which allow prediction and estimation of different scenarios, but are difficult to obtain for small and medium sized enterprises (SMEs). This research presents the design and validation of a generative adversarial network (GAN) capable of generating synthetic data for daily sales of Chilean SME. The problem that needs to be resolved is the lack of this kind of data within a Chilean fintech company called Dank. This data can be useful in developing an automatic risk evaluation model and, therefore, in reducing business process time, since risk evaluation is currently being carried out by people. The solution allows maintaining the anonymity of the data and using GAN to obtain different synthetic time series, increasing the data by 10%. It uses images from a vector of random numbers that are in temporal coherence and equal distribution. This research allows SMEs to obtain a greater amount of data, with a simple solution, to make better decisions.

Idioma originalInglés
Título de la publicación alojadaComputational Science and Its Applications – ICCSA 2024 Workshops, Proceedings
EditoresOsvaldo Gervasi, Beniamino Murgante, Chiara Garau, David Taniar, Ana Maria A. C. Rocha, Maria Noelia Faginas Lago
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas56-70
Número de páginas15
ISBN (versión impresa)9783031652844
DOI
EstadoPublicada - 2024
Evento24th International Conference on Computational Science and Its Applications, ICCSA 2024 - Hanoi, Vietnam
Duración: 1 jul. 20244 jul. 2024

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen14820 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia24th International Conference on Computational Science and Its Applications, ICCSA 2024
País/TerritorioVietnam
CiudadHanoi
Período1/07/244/07/24

Áreas temáticas de ASJC Scopus

  • Ciencia computacional teórica
  • Ciencia de la Computación General

Huella

Profundice en los temas de investigación de 'Evaluation of a Fintech Sales Synthetic Data Generation Model Using a Generative Adversarial Network'. En conjunto forman una huella única.

Citar esto