Enhancing Reptile Search Algorithm Performance for the Knapsack Problem with Integration of Chaotic Map

José Barrera-García, Felipe Cisternas-Caneo, Broderick Crawford, Ricardo Soto, Marcelo Becerra-Rozas, Giovanni Giachetti, Eric Monfroy

Producción científica: Contribución a los tipos de informe/libroContribución a la conferenciarevisión exhaustiva

Resumen

This study investigates the binarization process of the Reptile Search Algorithm (RSA) using chaotic maps to solve the Knapsack Problem. We evaluate RSA, Particle Swarm Optimization (PSO), and Grey Wolf Optimizer (GWO) using the S4 transfer function with four binarization strategies: standard, standard with chaotic maps, elitist, and elitist with chaotic maps. Experimental results show that standard binarization strategies, particularly RSA with standard binarization rule (STD) and RSA with standard binarization rule with a chaotic map (STD_SINE), consistently outperform elitist strategies across various Knapsack problem instances. Including chaotic maps, especially the sine chaotic map, slightly improves performance. Convergence analysis reveals that standard binarization ensures steady and strong convergence, while elitist binarization accelerates convergence but may risk settling on local optima early. This research highlights the importance of selecting appropriate binarization strategies and suggests further exploration of chaotic maps to enhance the performance of metaheuristic algorithms in solving binary combinatorial optimization problems.

Idioma originalInglés
Título de la publicación alojadaAdvances in Soft Computing - 23rd Mexican International Conference on Artificial Intelligence, MICAI 2024, Proceedings
EditoresLourdes Martínez-Villaseñor, Gilberto Ochoa-Ruiz
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas70-81
Número de páginas12
ISBN (versión impresa)9783031755422
DOI
EstadoPublicada - 2025
Evento23rd Mexican International Conference on Artificial Intelligence, MICAI 2024 - Tonantzintla, México
Duración: 21 oct. 202425 oct. 2024

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen15247 LNAI
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia23rd Mexican International Conference on Artificial Intelligence, MICAI 2024
País/TerritorioMéxico
CiudadTonantzintla
Período21/10/2425/10/24

Áreas temáticas de ASJC Scopus

  • Ciencia computacional teórica
  • Ciencia de la Computación General

Huella

Profundice en los temas de investigación de 'Enhancing Reptile Search Algorithm Performance for the Knapsack Problem with Integration of Chaotic Map'. En conjunto forman una huella única.

Citar esto