Electrochemical and photo-electrochemical processes of Methylene blue oxidation by Ti/TiO2 electrodes modified with Fe-allophane

Nicole Lezana, Francisco Fernández-Vidal, Cristhian Berríos, Elizabeth Garrido-Ramírez

Resultado de la investigación: Article

2 Citas (Scopus)

Resumen

This work reports the degradation of methylene blue (MB) on Ti/TiO2 and Ti/TiO2/Fe-allophane electrodes in a pH 3 using 0.1 M Na2SO4 as support electrolyte. SEM micrographs show a homogeneous distribution of TiO2 over the whole electrode surface forming nanotubes and nanopores. Fe-allophane modified electrode shows the formation of large-grains agglomerate on the electrode surface due to allophane, which provides a greater surface area to the electrode due to meso and micropore structures. Preliminary cyclic voltammetry show that Ti/TiO2 has the typical voltammetric response due to Ti(III)/Ti(IV) pair. Diffusional problems were observed through of the film when the electrode is modified with Fe-allophane modifying the quasi-reversible process Ti(III)/Ti(IV). Different kind of methodologies in the degradation process were used: Electrochemistry (EC), Photochemistry (PC), Photoelectrochemistry (PEC) and Adsorption (Ads). These methods were developing to discard any reaction or interaction that is not of interest. On Ti/TiO2 with PC and Ads methodologies was not observed any activity to MB degradation showing that is not photosensitive and that the interaction between this and surface electrode is low. But with EC and PEC degradation to 55% is reached after 3 hours of electrolysis. With Ti/TiO2-Fe-allophane electrodes are observed a higher activity for all methodologies. The PC and Ads methods show that the MB degradation reaches to ∼20 % of the initial concentration. As mentioned above, the PC and Ads processes no show degradation on Ti/TiO2, therefore the degradation it only due to the adsorption of MB in/on allophane coat behaving as concentrator matrix. A lower improvement is observed with EC process when is incorporated Ti/TiO2-Fe-allophane is due to the barrier of the electrode surface by oxidation products. With PEC is reached the higher degradation value of ∼88 %, showing an improvement of the degradation with the presence of Fe-allophane. The results indicate that the main role of Fe-allophane on the electrode is similar to a concentrator matrix.

Idioma originalEnglish
Páginas (desde-hasta)3529-3534
Número de páginas6
PublicaciónJournal of the Chilean Chemical Society
Volumen62
N.º2
DOI
EstadoPublished - 1 jun 2017

Huella dactilar

Methylene Blue
Oxidation
Electrodes
Degradation
Photochemical reactions
Adsorption
Electrochemistry
Nanopores
Electrolysis
Nanotubes
Electrolytes
Cyclic voltammetry
Thermodynamic properties
Scanning electron microscopy

ASJC Scopus subject areas

  • Chemistry(all)

Citar esto

@article{b8788dc564d34fd9bf1230d123e78601,
title = "Electrochemical and photo-electrochemical processes of Methylene blue oxidation by Ti/TiO2 electrodes modified with Fe-allophane",
abstract = "This work reports the degradation of methylene blue (MB) on Ti/TiO2 and Ti/TiO2/Fe-allophane electrodes in a pH 3 using 0.1 M Na2SO4 as support electrolyte. SEM micrographs show a homogeneous distribution of TiO2 over the whole electrode surface forming nanotubes and nanopores. Fe-allophane modified electrode shows the formation of large-grains agglomerate on the electrode surface due to allophane, which provides a greater surface area to the electrode due to meso and micropore structures. Preliminary cyclic voltammetry show that Ti/TiO2 has the typical voltammetric response due to Ti(III)/Ti(IV) pair. Diffusional problems were observed through of the film when the electrode is modified with Fe-allophane modifying the quasi-reversible process Ti(III)/Ti(IV). Different kind of methodologies in the degradation process were used: Electrochemistry (EC), Photochemistry (PC), Photoelectrochemistry (PEC) and Adsorption (Ads). These methods were developing to discard any reaction or interaction that is not of interest. On Ti/TiO2 with PC and Ads methodologies was not observed any activity to MB degradation showing that is not photosensitive and that the interaction between this and surface electrode is low. But with EC and PEC degradation to 55{\%} is reached after 3 hours of electrolysis. With Ti/TiO2-Fe-allophane electrodes are observed a higher activity for all methodologies. The PC and Ads methods show that the MB degradation reaches to ∼20 {\%} of the initial concentration. As mentioned above, the PC and Ads processes no show degradation on Ti/TiO2, therefore the degradation it only due to the adsorption of MB in/on allophane coat behaving as concentrator matrix. A lower improvement is observed with EC process when is incorporated Ti/TiO2-Fe-allophane is due to the barrier of the electrode surface by oxidation products. With PEC is reached the higher degradation value of ∼88 {\%}, showing an improvement of the degradation with the presence of Fe-allophane. The results indicate that the main role of Fe-allophane on the electrode is similar to a concentrator matrix.",
keywords = "Electrochemical and photoelectrochemical oxidation, Fe-Allophane, Methylene blue, Ti/TiO",
author = "Nicole Lezana and Francisco Fern{\'a}ndez-Vidal and Cristhian Berr{\'i}os and Elizabeth Garrido-Ram{\'i}rez",
year = "2017",
month = "6",
day = "1",
doi = "10.4067/S0717-97072017000200021",
language = "English",
volume = "62",
pages = "3529--3534",
journal = "Journal of the Chilean Chemical Society",
issn = "0717-9324",
publisher = "Sociedad Chilena De Quimica",
number = "2",

}

Electrochemical and photo-electrochemical processes of Methylene blue oxidation by Ti/TiO2 electrodes modified with Fe-allophane. / Lezana, Nicole; Fernández-Vidal, Francisco; Berríos, Cristhian; Garrido-Ramírez, Elizabeth.

En: Journal of the Chilean Chemical Society, Vol. 62, N.º 2, 01.06.2017, p. 3529-3534.

Resultado de la investigación: Article

TY - JOUR

T1 - Electrochemical and photo-electrochemical processes of Methylene blue oxidation by Ti/TiO2 electrodes modified with Fe-allophane

AU - Lezana, Nicole

AU - Fernández-Vidal, Francisco

AU - Berríos, Cristhian

AU - Garrido-Ramírez, Elizabeth

PY - 2017/6/1

Y1 - 2017/6/1

N2 - This work reports the degradation of methylene blue (MB) on Ti/TiO2 and Ti/TiO2/Fe-allophane electrodes in a pH 3 using 0.1 M Na2SO4 as support electrolyte. SEM micrographs show a homogeneous distribution of TiO2 over the whole electrode surface forming nanotubes and nanopores. Fe-allophane modified electrode shows the formation of large-grains agglomerate on the electrode surface due to allophane, which provides a greater surface area to the electrode due to meso and micropore structures. Preliminary cyclic voltammetry show that Ti/TiO2 has the typical voltammetric response due to Ti(III)/Ti(IV) pair. Diffusional problems were observed through of the film when the electrode is modified with Fe-allophane modifying the quasi-reversible process Ti(III)/Ti(IV). Different kind of methodologies in the degradation process were used: Electrochemistry (EC), Photochemistry (PC), Photoelectrochemistry (PEC) and Adsorption (Ads). These methods were developing to discard any reaction or interaction that is not of interest. On Ti/TiO2 with PC and Ads methodologies was not observed any activity to MB degradation showing that is not photosensitive and that the interaction between this and surface electrode is low. But with EC and PEC degradation to 55% is reached after 3 hours of electrolysis. With Ti/TiO2-Fe-allophane electrodes are observed a higher activity for all methodologies. The PC and Ads methods show that the MB degradation reaches to ∼20 % of the initial concentration. As mentioned above, the PC and Ads processes no show degradation on Ti/TiO2, therefore the degradation it only due to the adsorption of MB in/on allophane coat behaving as concentrator matrix. A lower improvement is observed with EC process when is incorporated Ti/TiO2-Fe-allophane is due to the barrier of the electrode surface by oxidation products. With PEC is reached the higher degradation value of ∼88 %, showing an improvement of the degradation with the presence of Fe-allophane. The results indicate that the main role of Fe-allophane on the electrode is similar to a concentrator matrix.

AB - This work reports the degradation of methylene blue (MB) on Ti/TiO2 and Ti/TiO2/Fe-allophane electrodes in a pH 3 using 0.1 M Na2SO4 as support electrolyte. SEM micrographs show a homogeneous distribution of TiO2 over the whole electrode surface forming nanotubes and nanopores. Fe-allophane modified electrode shows the formation of large-grains agglomerate on the electrode surface due to allophane, which provides a greater surface area to the electrode due to meso and micropore structures. Preliminary cyclic voltammetry show that Ti/TiO2 has the typical voltammetric response due to Ti(III)/Ti(IV) pair. Diffusional problems were observed through of the film when the electrode is modified with Fe-allophane modifying the quasi-reversible process Ti(III)/Ti(IV). Different kind of methodologies in the degradation process were used: Electrochemistry (EC), Photochemistry (PC), Photoelectrochemistry (PEC) and Adsorption (Ads). These methods were developing to discard any reaction or interaction that is not of interest. On Ti/TiO2 with PC and Ads methodologies was not observed any activity to MB degradation showing that is not photosensitive and that the interaction between this and surface electrode is low. But with EC and PEC degradation to 55% is reached after 3 hours of electrolysis. With Ti/TiO2-Fe-allophane electrodes are observed a higher activity for all methodologies. The PC and Ads methods show that the MB degradation reaches to ∼20 % of the initial concentration. As mentioned above, the PC and Ads processes no show degradation on Ti/TiO2, therefore the degradation it only due to the adsorption of MB in/on allophane coat behaving as concentrator matrix. A lower improvement is observed with EC process when is incorporated Ti/TiO2-Fe-allophane is due to the barrier of the electrode surface by oxidation products. With PEC is reached the higher degradation value of ∼88 %, showing an improvement of the degradation with the presence of Fe-allophane. The results indicate that the main role of Fe-allophane on the electrode is similar to a concentrator matrix.

KW - Electrochemical and photoelectrochemical oxidation

KW - Fe-Allophane

KW - Methylene blue

KW - Ti/TiO

UR - http://www.scopus.com/inward/record.url?scp=85027000762&partnerID=8YFLogxK

U2 - 10.4067/S0717-97072017000200021

DO - 10.4067/S0717-97072017000200021

M3 - Article

AN - SCOPUS:85027000762

VL - 62

SP - 3529

EP - 3534

JO - Journal of the Chilean Chemical Society

JF - Journal of the Chilean Chemical Society

SN - 0717-9324

IS - 2

ER -