Einstein-Gauss-Bonnet theory of gravity: The Gauss-Bonnet-Katz boundary term

Nathalie Deruelle, Nelson Merino, Rodrigo Olea

Resultado de la investigación: Contribución a una revistaArtículo

5 Citas (Scopus)


We propose a boundary term to the Einstein-Gauss-Bonnet action for gravity, which uses the Chern-Weil theorem plus a dimensional continuation process, such that the extremization of the full action yields the equations of motion when Dirichlet boundary conditions are imposed. When translated into tensorial language, this boundary term is the generalization to this theory of the Katz boundary term and vector for general relativity. The boundary term constructed in this paper allows to deal with a general background and is not equivalent to the Gibbons-Hawking-Myers boundary term. However, we show that they coincide if one replaces the background of the Katz procedure by a product manifold. As a first application we show that this Einstein Gauss-Bonnet Katz action yields, without any extra ingredients, the expected mass of the Boulware-Deser black hole.

Idioma originalInglés
Número de artículo104009
PublicaciónPhysical Review D
EstadoPublicada - 15 may 2018

Áreas temáticas de ASJC Scopus

  • Física y astronomía (miscelánea)

Huella Profundice en los temas de investigación de 'Einstein-Gauss-Bonnet theory of gravity: The Gauss-Bonnet-Katz boundary term'. En conjunto forman una huella única.

  • Citar esto