Dispersal and extrapolation on the accuracy of temporal predictions from distribution models for the Darwin's frog

David E. Uribe-Rivera, Claudio Soto-Azat, Andrés Valenzuela-Sánchez, Gustavo Bizama, Javier A. Simonetti, Patricio Pliscoff

Resultado de la investigación: Article

8 Citas (Scopus)

Resumen

Climate change is a major threat to biodiversity; the development of models that reliably predict its effects on species distributions is a priority for conservation biogeography. Two of the main issues for accurate temporal predictions from Species Distribution Models (SDM) are model extrapolation and unrealistic dispersal scenarios. We assessed the consequences of these issues on the accuracy of climate-driven SDM predictions for the dispersal-limited Darwin's frog Rhinoderma darwinii in South America. We calibrated models using historical data (1950-1975) and projected them across 40 yr to predict distribution under current climatic conditions, assessing predictive accuracy through the area under the ROC curve (AUC) and True Skill Statistics (TSS), contrasting binary model predictions against temporal-independent validation data set (i.e., current presences/absences). To assess the effects of incorporating dispersal processes we compared the predictive accuracy of dispersal constrained models with no dispersal limited SDMs; and to assess the effects of model extrapolation on the predictive accuracy of SDMs, we compared this between extrapolated and no extrapolated areas. The incorporation of dispersal processes enhanced predictive accuracy, mainly due to a decrease in the false presence rate of model predictions, which is consistent with discrimination of suitable but inaccessible habitat. This also had consequences on range size changes over time, which is the most used proxy for extinction risk from climate change. The area of current climatic conditions that was absent in the baseline conditions (i.e., extrapolated areas) represents 39% of the study area, leading to a significant decrease in predictive accuracy of model predictions for those areas. Our results highlight (1) incorporating dispersal processes can improve predictive accuracy of temporal transference of SDMs and reduce uncertainties of extinction risk assessments from global change; (2) as geographical areas subjected to novel climates are expected to arise, they must be reported as they show less accurate predictions under future climate scenarios. Consequently, environmental extrapolation and dispersal processes should be explicitly incorporated to report and reduce uncertainties in temporal predictions of SDMs, respectively. Doing so, we expect to improve the reliability of the information we provide for conservation decision makers under future climate change scenarios.

Idioma originalEnglish
Páginas (desde-hasta)1633-1645
Número de páginas13
PublicaciónEcological Applications
Volumen27
N.º5
DOI
EstadoPublished - 1 jul 2017

Huella dactilar

frog
prediction
extinction risk
climate change
climate
distribution
baseline conditions
biogeography
global change
range size
risk assessment
biodiversity
habitat

ASJC Scopus subject areas

  • Ecology

Citar esto

Uribe-Rivera, David E. ; Soto-Azat, Claudio ; Valenzuela-Sánchez, Andrés ; Bizama, Gustavo ; Simonetti, Javier A. ; Pliscoff, Patricio. / Dispersal and extrapolation on the accuracy of temporal predictions from distribution models for the Darwin's frog. En: Ecological Applications. 2017 ; Vol. 27, N.º 5. pp. 1633-1645.
@article{42c5def761ad45099b4148acebb8f3e2,
title = "Dispersal and extrapolation on the accuracy of temporal predictions from distribution models for the Darwin's frog",
abstract = "Climate change is a major threat to biodiversity; the development of models that reliably predict its effects on species distributions is a priority for conservation biogeography. Two of the main issues for accurate temporal predictions from Species Distribution Models (SDM) are model extrapolation and unrealistic dispersal scenarios. We assessed the consequences of these issues on the accuracy of climate-driven SDM predictions for the dispersal-limited Darwin's frog Rhinoderma darwinii in South America. We calibrated models using historical data (1950-1975) and projected them across 40 yr to predict distribution under current climatic conditions, assessing predictive accuracy through the area under the ROC curve (AUC) and True Skill Statistics (TSS), contrasting binary model predictions against temporal-independent validation data set (i.e., current presences/absences). To assess the effects of incorporating dispersal processes we compared the predictive accuracy of dispersal constrained models with no dispersal limited SDMs; and to assess the effects of model extrapolation on the predictive accuracy of SDMs, we compared this between extrapolated and no extrapolated areas. The incorporation of dispersal processes enhanced predictive accuracy, mainly due to a decrease in the false presence rate of model predictions, which is consistent with discrimination of suitable but inaccessible habitat. This also had consequences on range size changes over time, which is the most used proxy for extinction risk from climate change. The area of current climatic conditions that was absent in the baseline conditions (i.e., extrapolated areas) represents 39{\%} of the study area, leading to a significant decrease in predictive accuracy of model predictions for those areas. Our results highlight (1) incorporating dispersal processes can improve predictive accuracy of temporal transference of SDMs and reduce uncertainties of extinction risk assessments from global change; (2) as geographical areas subjected to novel climates are expected to arise, they must be reported as they show less accurate predictions under future climate scenarios. Consequently, environmental extrapolation and dispersal processes should be explicitly incorporated to report and reduce uncertainties in temporal predictions of SDMs, respectively. Doing so, we expect to improve the reliability of the information we provide for conservation decision makers under future climate change scenarios.",
keywords = "climate change, ecological niche modeling, extinction risk, model transferability, no-analogue climates, range dynamics",
author = "Uribe-Rivera, {David E.} and Claudio Soto-Azat and Andr{\'e}s Valenzuela-S{\'a}nchez and Gustavo Bizama and Simonetti, {Javier A.} and Patricio Pliscoff",
year = "2017",
month = "7",
day = "1",
doi = "10.1002/eap.1556",
language = "English",
volume = "27",
pages = "1633--1645",
journal = "Ecological Applications",
issn = "1051-0761",
publisher = "Wiley-Blackwell",
number = "5",

}

Uribe-Rivera, DE, Soto-Azat, C, Valenzuela-Sánchez, A, Bizama, G, Simonetti, JA & Pliscoff, P 2017, 'Dispersal and extrapolation on the accuracy of temporal predictions from distribution models for the Darwin's frog', Ecological Applications, vol. 27, n.º 5, pp. 1633-1645. https://doi.org/10.1002/eap.1556

Dispersal and extrapolation on the accuracy of temporal predictions from distribution models for the Darwin's frog. / Uribe-Rivera, David E.; Soto-Azat, Claudio; Valenzuela-Sánchez, Andrés; Bizama, Gustavo; Simonetti, Javier A.; Pliscoff, Patricio.

En: Ecological Applications, Vol. 27, N.º 5, 01.07.2017, p. 1633-1645.

Resultado de la investigación: Article

TY - JOUR

T1 - Dispersal and extrapolation on the accuracy of temporal predictions from distribution models for the Darwin's frog

AU - Uribe-Rivera, David E.

AU - Soto-Azat, Claudio

AU - Valenzuela-Sánchez, Andrés

AU - Bizama, Gustavo

AU - Simonetti, Javier A.

AU - Pliscoff, Patricio

PY - 2017/7/1

Y1 - 2017/7/1

N2 - Climate change is a major threat to biodiversity; the development of models that reliably predict its effects on species distributions is a priority for conservation biogeography. Two of the main issues for accurate temporal predictions from Species Distribution Models (SDM) are model extrapolation and unrealistic dispersal scenarios. We assessed the consequences of these issues on the accuracy of climate-driven SDM predictions for the dispersal-limited Darwin's frog Rhinoderma darwinii in South America. We calibrated models using historical data (1950-1975) and projected them across 40 yr to predict distribution under current climatic conditions, assessing predictive accuracy through the area under the ROC curve (AUC) and True Skill Statistics (TSS), contrasting binary model predictions against temporal-independent validation data set (i.e., current presences/absences). To assess the effects of incorporating dispersal processes we compared the predictive accuracy of dispersal constrained models with no dispersal limited SDMs; and to assess the effects of model extrapolation on the predictive accuracy of SDMs, we compared this between extrapolated and no extrapolated areas. The incorporation of dispersal processes enhanced predictive accuracy, mainly due to a decrease in the false presence rate of model predictions, which is consistent with discrimination of suitable but inaccessible habitat. This also had consequences on range size changes over time, which is the most used proxy for extinction risk from climate change. The area of current climatic conditions that was absent in the baseline conditions (i.e., extrapolated areas) represents 39% of the study area, leading to a significant decrease in predictive accuracy of model predictions for those areas. Our results highlight (1) incorporating dispersal processes can improve predictive accuracy of temporal transference of SDMs and reduce uncertainties of extinction risk assessments from global change; (2) as geographical areas subjected to novel climates are expected to arise, they must be reported as they show less accurate predictions under future climate scenarios. Consequently, environmental extrapolation and dispersal processes should be explicitly incorporated to report and reduce uncertainties in temporal predictions of SDMs, respectively. Doing so, we expect to improve the reliability of the information we provide for conservation decision makers under future climate change scenarios.

AB - Climate change is a major threat to biodiversity; the development of models that reliably predict its effects on species distributions is a priority for conservation biogeography. Two of the main issues for accurate temporal predictions from Species Distribution Models (SDM) are model extrapolation and unrealistic dispersal scenarios. We assessed the consequences of these issues on the accuracy of climate-driven SDM predictions for the dispersal-limited Darwin's frog Rhinoderma darwinii in South America. We calibrated models using historical data (1950-1975) and projected them across 40 yr to predict distribution under current climatic conditions, assessing predictive accuracy through the area under the ROC curve (AUC) and True Skill Statistics (TSS), contrasting binary model predictions against temporal-independent validation data set (i.e., current presences/absences). To assess the effects of incorporating dispersal processes we compared the predictive accuracy of dispersal constrained models with no dispersal limited SDMs; and to assess the effects of model extrapolation on the predictive accuracy of SDMs, we compared this between extrapolated and no extrapolated areas. The incorporation of dispersal processes enhanced predictive accuracy, mainly due to a decrease in the false presence rate of model predictions, which is consistent with discrimination of suitable but inaccessible habitat. This also had consequences on range size changes over time, which is the most used proxy for extinction risk from climate change. The area of current climatic conditions that was absent in the baseline conditions (i.e., extrapolated areas) represents 39% of the study area, leading to a significant decrease in predictive accuracy of model predictions for those areas. Our results highlight (1) incorporating dispersal processes can improve predictive accuracy of temporal transference of SDMs and reduce uncertainties of extinction risk assessments from global change; (2) as geographical areas subjected to novel climates are expected to arise, they must be reported as they show less accurate predictions under future climate scenarios. Consequently, environmental extrapolation and dispersal processes should be explicitly incorporated to report and reduce uncertainties in temporal predictions of SDMs, respectively. Doing so, we expect to improve the reliability of the information we provide for conservation decision makers under future climate change scenarios.

KW - climate change

KW - ecological niche modeling

KW - extinction risk

KW - model transferability

KW - no-analogue climates

KW - range dynamics

UR - http://www.scopus.com/inward/record.url?scp=85021784357&partnerID=8YFLogxK

U2 - 10.1002/eap.1556

DO - 10.1002/eap.1556

M3 - Article

AN - SCOPUS:85021784357

VL - 27

SP - 1633

EP - 1645

JO - Ecological Applications

JF - Ecological Applications

SN - 1051-0761

IS - 5

ER -