TY - JOUR
T1 - Discovery of a rich cluster at z = 1.63 using the rest-frame 1.6 μm "stellar bump sequence" method
AU - Muzzin, Adam
AU - Wilson, Gillian
AU - Demarco, Ricardo
AU - Lidman, Chris
AU - Nantais, Julie
AU - Hoekstra, Henk
AU - Yee, H. K.C.
AU - Rettura, Alessandro
PY - 2013/4/10
Y1 - 2013/4/10
N2 - We present a new two-color algorithm, the "Stellar Bump Sequence" (SBS), that is optimized for robustly identifying candidate high-redshift galaxy clusters in combined wide-field optical and mid-infrared (MIR) data. The SBS algorithm is a fusion of the well-tested cluster red-sequence method of Gladders & Yee with the MIR 3.6 μm-4.5 μm cluster detection method developed by Papovich. As with the cluster red-sequence method, the SBS identifies candidate overdensities within 3.6 μm-4.5 μm color slices, which are the equivalent of a rest-frame 1.6 μm stellar bump "red-sequence." In addition to employing the MIR colors of galaxies, the SBS algorithm incorporates an optical/MIR (z′-3.6 μm) color cut. This cut effectively eliminates foreground 0.2 1.0 galaxies and add noise when searching for high-redshift galaxy overdensities. We demonstrate using the z ∼ 1 GCLASS cluster sample that similar to the red sequence, the stellar bump sequence appears to be a ubiquitous feature of high-redshift clusters, and that within that sample the color of the stellar bump sequence increases monotonically with redshift and provides photometric redshifts accurate to Δz = 0.05. We apply the SBS method in the XMM-LSS SWIRE field and show that it robustly recovers the majority of confirmed optical, MIR, and X-ray-selected clusters at z > 1.0 in that field. Lastly, we present confirmation of SpARCS J022427-032354 at z = 1.63, a new cluster detected with the method and confirmed with 12 high-confidence spectroscopic redshifts obtained using FORS2 on the Very Large Telescope. We conclude with a discussion of future prospects for using the algorithm.
AB - We present a new two-color algorithm, the "Stellar Bump Sequence" (SBS), that is optimized for robustly identifying candidate high-redshift galaxy clusters in combined wide-field optical and mid-infrared (MIR) data. The SBS algorithm is a fusion of the well-tested cluster red-sequence method of Gladders & Yee with the MIR 3.6 μm-4.5 μm cluster detection method developed by Papovich. As with the cluster red-sequence method, the SBS identifies candidate overdensities within 3.6 μm-4.5 μm color slices, which are the equivalent of a rest-frame 1.6 μm stellar bump "red-sequence." In addition to employing the MIR colors of galaxies, the SBS algorithm incorporates an optical/MIR (z′-3.6 μm) color cut. This cut effectively eliminates foreground 0.2 1.0 galaxies and add noise when searching for high-redshift galaxy overdensities. We demonstrate using the z ∼ 1 GCLASS cluster sample that similar to the red sequence, the stellar bump sequence appears to be a ubiquitous feature of high-redshift clusters, and that within that sample the color of the stellar bump sequence increases monotonically with redshift and provides photometric redshifts accurate to Δz = 0.05. We apply the SBS method in the XMM-LSS SWIRE field and show that it robustly recovers the majority of confirmed optical, MIR, and X-ray-selected clusters at z > 1.0 in that field. Lastly, we present confirmation of SpARCS J022427-032354 at z = 1.63, a new cluster detected with the method and confirmed with 12 high-confidence spectroscopic redshifts obtained using FORS2 on the Very Large Telescope. We conclude with a discussion of future prospects for using the algorithm.
KW - galaxies: clusters: general
KW - galaxies: high-redshift
KW - infrared: galaxies
KW - large-scale structure of universe
UR - http://www.scopus.com/inward/record.url?scp=84875686282&partnerID=8YFLogxK
U2 - 10.1088/0004-637X/767/1/39
DO - 10.1088/0004-637X/767/1/39
M3 - Article
AN - SCOPUS:84875686282
SN - 0004-637X
VL - 767
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 39
ER -