Discovering geochemical patterns using self-organizing neural networks: A new perspective for sedimentary provenance analysis

Juan Pablo Lacassie, Barry Roser, Javier Ruiz Del Solar, Francisco Hervé

Resultado de la investigación: Contribución a una revistaArtículo

27 Citas (Scopus)

Resumen

An unsupervised neural network technique, Growing Cell Structures (GCS), was used to visualize geochemical differences between sandstones of four different sedimentary provenance groups: P1 (mafic), P2 (intermediate), P3 (felsic), and P4 (recycled). Multidimensional data of four sandstone data sets comprising major elements, log-normalized major elements, trace elements, and high field strength elements (HFSE) were projected into colored two-dimensional maps that can be visually and quantitatively interpreted. The cluster structure and variable distributions produced show that each sedimentary provenance group can be distinguished in the neural maps according to a unique combination of major or trace element concentrations. In these terms, the distinguishing features of each provenance group are: P1-high Fe2O3t, TiO2, MgO, MnO, CaO, P2O5, Sc, V, Cr, and Cu; P2-intermediate Fe2O3t, TiO2, MgO, MnO, CaO, Sc, V, and Cu; P3-intermediate to high K2O, intermediate SiO2 and Al2O3, low Fe2O3t and TiO2, and intermediate to low Nb, Rb, and Th; P4-high SiO2, Y, Nb, Rb, Th, Ba, and Zr, coupled with low Al2O3, CaO, Na2O, Fe2O3t, MgO, MnO, and TiO2. The elemental associations in P1, P2, and P3 reflect petrogenetic evolution of first-cycle sources, whereas the associations in P4 are compatible with the combined effects of recycling, weathering, and heavy mineral concentration.

Idioma originalInglés
Páginas (desde-hasta)175-191
Número de páginas17
PublicaciónSedimentary Geology
Volumen165
N.º1-2
DOI
EstadoPublicada - 1 mar 2004

Áreas temáticas de ASJC Scopus

  • Geología
  • Estratigrafía

Huella Profundice en los temas de investigación de 'Discovering geochemical patterns using self-organizing neural networks: A new perspective for sedimentary provenance analysis'. En conjunto forman una huella única.

  • Citar esto