TY - JOUR
T1 - Differential Fibrotic Response of Muscle Fibroblasts, Myoblasts, and Myotubes to Cholic and Deoxycholic Acids
AU - Maldonado, Luis
AU - Orozco-Aguilar, Josué
AU - Valero-Breton, Mayalen
AU - Tacchi, Franco
AU - Cifuentes-Silva, Eduardo
AU - Cabello-Verrugio, Claudio
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2023
Y1 - 2023
N2 - Fibrosis is a condition characterized by an increase in the components of the extracellular matrix (ECM). In skeletal muscle, the cells that participate in the synthesis of ECM are fibroblasts, myoblasts, and myotubes. These cells respond to soluble factors that increase ECM. Fibrosis is a phenomenon that develops in conditions of chronic inflammation, extensive lesions, or chronic diseases. A pathological condition with muscle weakness and increased bile acids (BA) in the blood is cholestatic chronic liver diseases (CCLD). Skeletal muscle expresses the membrane receptor for BA called TGR5. To date, muscle fibrosis in CCLD has not been evaluated. This study aims to assess whether BA can induce a fibrotic condition in muscle fibroblasts, myoblasts, and myotubes. The cells were incubated with deoxycholic (DCA) and cholic (CA) acids, and fibronectin protein levels were evaluated by Western blot. In muscle fibroblasts, both DCA and CA induced an increase in fibronectin protein levels. The same response was found in fibroblasts when activating TGR5 with the specific receptor agonist (INT-777). Interestingly, DCA reduced fibronectin protein levels in both myoblasts and myotubes, while CA did not show changes in fibronectin protein levels in myoblasts and myotubes. These results suggest that DCA and CA can induce a fibrotic phenotype in muscle-derived fibroblasts. On the other hand, DCA decreased the fibronectin in myoblasts and myotubes, whereas CA did not show any effect in these cell populations. Our results show that BA has different effects depending on the cell population to be analyzed.
AB - Fibrosis is a condition characterized by an increase in the components of the extracellular matrix (ECM). In skeletal muscle, the cells that participate in the synthesis of ECM are fibroblasts, myoblasts, and myotubes. These cells respond to soluble factors that increase ECM. Fibrosis is a phenomenon that develops in conditions of chronic inflammation, extensive lesions, or chronic diseases. A pathological condition with muscle weakness and increased bile acids (BA) in the blood is cholestatic chronic liver diseases (CCLD). Skeletal muscle expresses the membrane receptor for BA called TGR5. To date, muscle fibrosis in CCLD has not been evaluated. This study aims to assess whether BA can induce a fibrotic condition in muscle fibroblasts, myoblasts, and myotubes. The cells were incubated with deoxycholic (DCA) and cholic (CA) acids, and fibronectin protein levels were evaluated by Western blot. In muscle fibroblasts, both DCA and CA induced an increase in fibronectin protein levels. The same response was found in fibroblasts when activating TGR5 with the specific receptor agonist (INT-777). Interestingly, DCA reduced fibronectin protein levels in both myoblasts and myotubes, while CA did not show changes in fibronectin protein levels in myoblasts and myotubes. These results suggest that DCA and CA can induce a fibrotic phenotype in muscle-derived fibroblasts. On the other hand, DCA decreased the fibronectin in myoblasts and myotubes, whereas CA did not show any effect in these cell populations. Our results show that BA has different effects depending on the cell population to be analyzed.
KW - Bile acids
KW - Fibronectin
KW - Fibrosis
KW - Liver diseases
KW - Skeletal muscle cells
KW - TGR5 receptor
UR - http://www.scopus.com/inward/record.url?scp=85153687728&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-26163-3_12
DO - 10.1007/978-3-031-26163-3_12
M3 - Article
C2 - 37093430
AN - SCOPUS:85153687728
SN - 0065-2598
SP - 219
EP - 234
JO - Advances in Experimental Medicine and Biology
JF - Advances in Experimental Medicine and Biology
ER -