Detection of Urination Using Machine Learning and Acoustics

Miguel Pineiro, Sebastian Puebla, Andrea Vazquez-Ingelmo, Carla Taramasco

Producción científica: Contribución a los tipos de informe/libroContribución a la conferenciarevisión exhaustiva

Resumen

Various factors, such as hydration levels, urinary tract diseases, prostatic hyperplasia, neurological disorders, medications, diabetes, and renal failure, can affect urination. This article explores the possibility of continuously evaluating urinary health using IoT technology by employing a contact microphone attached to the outside of the toilet bowl to record the acoustic patterns of urination for subsequent analysis. The performance of several algorithms for detecting urination patterns was investigated. Acoustic recordings were divided into segments of different sizes, from which 11 features were extracted. Support Vector Machines (SVM) were then used to assess the algorithm's effectiveness with various combinations of features and segment sizes. The aim of this study is to investigate the effectiveness of different methods for detecting acoustic patterns of urination, providing a range of algorithmic alternatives adaptable to the available processing capacity for detection.

Idioma originalInglés
Título de la publicación alojadaProceedings - 2024 50th Latin American Computing Conference, CLEI 2024
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798331540975
DOI
EstadoPublicada - 2024
Evento50th Latin American Computing Conference, CLEI 2024 - Bahia Blanca, Argentina
Duración: 12 ago. 202416 ago. 2024

Serie de la publicación

NombreProceedings - 2024 50th Latin American Computing Conference, CLEI 2024

Conferencia

Conferencia50th Latin American Computing Conference, CLEI 2024
País/TerritorioArgentina
CiudadBahia Blanca
Período12/08/2416/08/24

Áreas temáticas de ASJC Scopus

  • Informática aplicada
  • Hardware y arquitectura
  • Redes de ordenadores y comunicaciones
  • Inteligencia artificial

Huella

Profundice en los temas de investigación de 'Detection of Urination Using Machine Learning and Acoustics'. En conjunto forman una huella única.

Citar esto