Deep Learning Techniques for Oral Cancer Detection: Enhancing Clinical Diagnosis by ResNet and DenseNet Performance

Pablo Ormeño-Arriagada, Eduardo Navarro, Carla Taramasco, Gustavo Gatica, Juan Pablo Vásconez

Producción científica: Contribución a los tipos de informe/libroContribución a la conferenciarevisión exhaustiva

Resumen

This study aims to enhance the accuracy and efficiency of oral cancer diagnosis through the application of deep learning techniques in medical image analysis. The research employs convolutional neural networks (CNNs), specifically ResNet and DenseNet architectures, for the classification of oral cancer images into malignant and benign categories. Data preprocessing involves resizing, normalization, and augmentation to optimize model performance. Evaluation metrics including accuracy, loss, specificity, and sensitivity demonstrate varying performance across different CNN models. DenseNet architectures consistently outperform ResNet and conventional CNNs in terms of accuracy and sensitivity metrics. The results showed that DenseNet consistently outperformed ResNet, achieving higher accuracy and sensitivity, which are crucial for early cancer detection. The findings underscore the transformative potential of deep learning in augmenting clinical decision-making for oral cancer detection. Integration of these advanced technologies into healthcare workflows could significantly improve early detection rates and treatment outcomes, paving the way for personalized medicine approaches in oncology.

Idioma originalInglés
Título de la publicación alojadaApplied Informatics - 7th International Conference, ICAI 2024, Proceedings
EditoresHector Florez, Hernán Astudillo
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas59-72
Número de páginas14
ISBN (versión impresa)9783031751431
DOI
EstadoPublicada - 2025
Evento7th International Conference on Applied Informatics, ICAI 2024 - Vina del Mar, Chile
Duración: 24 oct. 202426 oct. 2024

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen2236 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia7th International Conference on Applied Informatics, ICAI 2024
País/TerritorioChile
CiudadVina del Mar
Período24/10/2426/10/24

Áreas temáticas de ASJC Scopus

  • Ciencia de la Computación General
  • Matemáticas General

Huella

Profundice en los temas de investigación de 'Deep Learning Techniques for Oral Cancer Detection: Enhancing Clinical Diagnosis by ResNet and DenseNet Performance'. En conjunto forman una huella única.

Citar esto