Computing the speed of convergence of ergodic averages and pseudorandom points in computable dynamical systems

Stefano Galatolo, Mathieu Hoyrup, Crist́obal Rojas

Resultado de la investigación: Contribución a una revistaArtículo

4 Citas (Scopus)

Resumen

A pseudorandom point in an ergodic dynamical system over a computable metric space is a point which is computable but its dynamics has the same statistical behavior as a typical point of the system. It was proved in [2] that in a system whose dynamics is computable the ergodic averages of computable observables converge effectively. We give an alternative, simpler proof of this result. This implies that if also the invariant measure is computable then the pseudorandom points are a set which is dense (hence nonempty) on the support of the invariant measure.

Idioma originalInglés
Páginas (desde-hasta)7-18
Número de páginas12
PublicaciónElectronic Proceedings in Theoretical Computer Science, EPTCS
Volumen24
DOI
EstadoPublicada - 2010

Áreas temáticas de ASJC Scopus

  • Software

Huella Profundice en los temas de investigación de 'Computing the speed of convergence of ergodic averages and pseudorandom points in computable dynamical systems'. En conjunto forman una huella única.

  • Citar esto