Computability of the radon-nikodym derivative

Mathieu Hoyrup, Cristóbal Rojas, Klaus Weihrauch

Resultado de la investigación: Contribución a una revistaArtículo

17 Citas (Scopus)

Resumen

We study the computational content of the Radon-Nokodym theorem from measure theory in the framework of the representation approach to computable analysis. We define computable measurable spaces and canonical representations of the measures and the integrable functions on such spaces. For functions f, g on represented sets, f is W-reducible to g if f can be computed by applying the function g at most once. Let RN be the Radon-Nikodym operator on the space under consideration and let EC be the non-computable operator mapping every enumeration of a set of natural numbers to its characteristic function. We prove that for every computable measurable space, RN is W-reducible to EC, and we construct a computable measurable space for which EC is W-reducible to RN.

Idioma originalInglés
Páginas (desde-hasta)3-13
Número de páginas11
PublicaciónComputability
Volumen1
N.º1
DOI
EstadoPublicada - 1 ene 2012

Áreas temáticas de ASJC Scopus

  • Ciencia computacional teórica
  • Informática aplicada
  • Teoría computacional y matemáticas
  • Inteligencia artificial

Huella Profundice en los temas de investigación de 'Computability of the radon-nikodym derivative'. En conjunto forman una huella única.

  • Citar esto