Computability of the Radon-Nikodym derivative

Mathieu Hoyrup, Cristóbal Rojas, Klaus Weihrauch

Resultado de la investigación: Contribución a los tipos de informe/libroContribución a la conferencia

4 Citas (Scopus)

Resumen

We show that a single application of the non-computable operator EC, which transforms enumerations of sets (in ℕ) to their characteristic functions, suffices to compute the Radon-Nikodym derivative dμ/dλ of a finite measure μ, which is absolutely continuous w.r.t. the σ-finite measure λ. We also give a condition on the two measures (in terms of computability of the norm of a certain linear operator involving the two measures) which is sufficient to compute the derivative.

Idioma originalInglés
Título de la publicación alojadaModels of Computation in Context - 7th Conference on Computability in Europe, CiE 2011, Proceedings
Páginas132-141
Número de páginas10
Volumen6735 LNCS
DOI
EstadoPublicada - 2011
Evento7th Conference on Computability in Europe, CiE 2011 - Sofia, Bulgaria
Duración: 27 jun 20112 jul 2011

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen6735 LNCS
ISSN (versión impresa)03029743
ISSN (versión digital)16113349

Otros

Otros7th Conference on Computability in Europe, CiE 2011
PaísBulgaria
CiudadSofia
Período27/06/112/07/11

Áreas temáticas de ASJC Scopus

  • Ciencia computacional teórica
  • Informática (todo)

Huella Profundice en los temas de investigación de 'Computability of the Radon-Nikodym derivative'. En conjunto forman una huella única.

  • Citar esto

    Hoyrup, M., Rojas, C., & Weihrauch, K. (2011). Computability of the Radon-Nikodym derivative. En Models of Computation in Context - 7th Conference on Computability in Europe, CiE 2011, Proceedings (Vol. 6735 LNCS, pp. 132-141). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 6735 LNCS). https://doi.org/10.1007/978-3-642-21875-0_14