Cloning and characterization of Chlorobium tepidum ferritin

Alejandro E. Yevenes, Valeria Marquez, Richard K. Watt

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

8 Citas (Scopus)

Resumen

The Chlorobium tepidum ferritin (CtFtn) gene was synthesized and cloned into a pET3a expression vector (Novagen). CtFtn was expressed in Escherichia coli and purified to electrophoretic homogeneity. Sequence analysis indicates that all the conserved amino acids required to form the Fe2+ oxidizing ferroxidase center are present. Ftn is highly conserved from bacteria to humans, each subunit folds into a 4-helical bundle (helices A-D), with a long loop connecting helices B and C, plus a fifth short E-helix at the C-terminus. Calculations based on the secondary structure of CtFtn predict that each of these helices forms. However, the sequence of CtFtn shows a much longer C-terminus with a significant number of polar amino acids. Size-exclusion chromatography shows that CtFtn elutes at a size consistent with a 24-subunit protein cage. Incubation of CtFtn with Fe2+ produced an increase in the absorbance at 310 nm consistent with the incorporation of iron inside CtFtn. Assays monitoring ferroxidase activity showed that CtFtn possesses ferroxidase activity but it is less active than human H-chain ferritin. Additionally, the iron loading capacity of CtFtn is significantly reduced compared to proteins from other organisms. We propose that the unique extended C-terminus in CtFtn causes the decreased iron loading in CtFtn and possibly influences the slower rate of iron oxidation at the ferroxidase center.

Idioma originalInglés
Páginas (desde-hasta)352-360
Número de páginas9
PublicaciónBiochimie
Volumen93
N.º2
DOI
EstadoPublicada - feb. 2011
Publicado de forma externa

Áreas temáticas de ASJC Scopus

  • Bioquímica

Huella

Profundice en los temas de investigación de 'Cloning and characterization of Chlorobium tepidum ferritin'. En conjunto forman una huella única.

Citar esto