Chaotic genetic algorithm and the effects of entropy in performance optimization

Guillermo Fuertes, Manuel Vargas, Miguel Alfaro, Rodrigo Soto-Garrido, Jorge Sabattin, María Alejandra Peralta

Resultado de la investigación: Article

Resumen

This work proposes a new edge about the Chaotic Genetic Algorithm (CGA) and the importance of the entropy in the initial population. Inspired by chaos theory, the CGA uses chaotic maps to modify the stochastic parameters of Genetic Algorithm. The algorithm modifies the parameters of the initial population using chaotic series and then analyzes the entropy of such population. This strategy exhibits the relationship between entropy and performance optimization in complex search spaces. Our study includes the optimization of nine benchmark functions using eight different chaotic maps for each of the benchmark functions. The numerical experiment demonstrates a direct relation between entropy and performance of the algorithm.

Idioma originalEnglish
Número de artículo013132
PublicaciónChaos
Volumen29
N.º1
DOI
EstadoPublished - 1 ene 2019

Huella dactilar

Performance Optimization
genetic algorithms
Entropy
Chaotic Map
Genetic algorithms
Genetic Algorithm
entropy
optimization
Entropy Optimization
Benchmark
Chaos Theory
Search Space
Numerical Experiment
Chaos theory
chaos
Series
Optimization
Demonstrate
Experiments

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics
  • Physics and Astronomy(all)
  • Applied Mathematics

Citar esto

Fuertes, G., Vargas, M., Alfaro, M., Soto-Garrido, R., Sabattin, J., & Peralta, M. A. (2019). Chaotic genetic algorithm and the effects of entropy in performance optimization. Chaos, 29(1), [013132]. https://doi.org/10.1063/1.5048299
Fuertes, Guillermo ; Vargas, Manuel ; Alfaro, Miguel ; Soto-Garrido, Rodrigo ; Sabattin, Jorge ; Peralta, María Alejandra. / Chaotic genetic algorithm and the effects of entropy in performance optimization. En: Chaos. 2019 ; Vol. 29, N.º 1.
@article{35d7c3cc9e9e4c9b8a190d38081cb056,
title = "Chaotic genetic algorithm and the effects of entropy in performance optimization",
abstract = "This work proposes a new edge about the Chaotic Genetic Algorithm (CGA) and the importance of the entropy in the initial population. Inspired by chaos theory, the CGA uses chaotic maps to modify the stochastic parameters of Genetic Algorithm. The algorithm modifies the parameters of the initial population using chaotic series and then analyzes the entropy of such population. This strategy exhibits the relationship between entropy and performance optimization in complex search spaces. Our study includes the optimization of nine benchmark functions using eight different chaotic maps for each of the benchmark functions. The numerical experiment demonstrates a direct relation between entropy and performance of the algorithm.",
author = "Guillermo Fuertes and Manuel Vargas and Miguel Alfaro and Rodrigo Soto-Garrido and Jorge Sabattin and Peralta, {Mar{\'i}a Alejandra}",
year = "2019",
month = "1",
day = "1",
doi = "10.1063/1.5048299",
language = "English",
volume = "29",
journal = "Chaos",
issn = "1054-1500",
publisher = "American Institute of Physics",
number = "1",

}

Fuertes, G, Vargas, M, Alfaro, M, Soto-Garrido, R, Sabattin, J & Peralta, MA 2019, 'Chaotic genetic algorithm and the effects of entropy in performance optimization', Chaos, vol. 29, n.º 1, 013132. https://doi.org/10.1063/1.5048299

Chaotic genetic algorithm and the effects of entropy in performance optimization. / Fuertes, Guillermo; Vargas, Manuel; Alfaro, Miguel; Soto-Garrido, Rodrigo; Sabattin, Jorge; Peralta, María Alejandra.

En: Chaos, Vol. 29, N.º 1, 013132, 01.01.2019.

Resultado de la investigación: Article

TY - JOUR

T1 - Chaotic genetic algorithm and the effects of entropy in performance optimization

AU - Fuertes, Guillermo

AU - Vargas, Manuel

AU - Alfaro, Miguel

AU - Soto-Garrido, Rodrigo

AU - Sabattin, Jorge

AU - Peralta, María Alejandra

PY - 2019/1/1

Y1 - 2019/1/1

N2 - This work proposes a new edge about the Chaotic Genetic Algorithm (CGA) and the importance of the entropy in the initial population. Inspired by chaos theory, the CGA uses chaotic maps to modify the stochastic parameters of Genetic Algorithm. The algorithm modifies the parameters of the initial population using chaotic series and then analyzes the entropy of such population. This strategy exhibits the relationship between entropy and performance optimization in complex search spaces. Our study includes the optimization of nine benchmark functions using eight different chaotic maps for each of the benchmark functions. The numerical experiment demonstrates a direct relation between entropy and performance of the algorithm.

AB - This work proposes a new edge about the Chaotic Genetic Algorithm (CGA) and the importance of the entropy in the initial population. Inspired by chaos theory, the CGA uses chaotic maps to modify the stochastic parameters of Genetic Algorithm. The algorithm modifies the parameters of the initial population using chaotic series and then analyzes the entropy of such population. This strategy exhibits the relationship between entropy and performance optimization in complex search spaces. Our study includes the optimization of nine benchmark functions using eight different chaotic maps for each of the benchmark functions. The numerical experiment demonstrates a direct relation between entropy and performance of the algorithm.

UR - http://www.scopus.com/inward/record.url?scp=85060826084&partnerID=8YFLogxK

U2 - 10.1063/1.5048299

DO - 10.1063/1.5048299

M3 - Article

C2 - 30709130

AN - SCOPUS:85060826084

VL - 29

JO - Chaos

JF - Chaos

SN - 1054-1500

IS - 1

M1 - 013132

ER -

Fuertes G, Vargas M, Alfaro M, Soto-Garrido R, Sabattin J, Peralta MA. Chaotic genetic algorithm and the effects of entropy in performance optimization. Chaos. 2019 ene 1;29(1). 013132. https://doi.org/10.1063/1.5048299