Chaos for rescaled measures on Kac’s sphere

Roberto Cortez, Hagop Tossounian

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

In this article we study a relatively novel way of constructing chaotic sequences of probability measures supported on Kac’s sphere, which are obtained as the law of a vector of N i.i.d. variables after it is rescaled to have unit average energy. We show that, as N increases, this sequence is chaotic in the sense of Kac, with respect to the Wasserstein distance, in L1, in the entropic sense, and in the Fisher information sense. For many of these results, we provide explicit rates of polynomial order in N. In the process, we improve a quantitative entropic chaos result of Haurey and Mischler by relaxing the finite moment requirement on the densities from order 6 to 4 + ɛ.

Idioma originalInglés
Número de artículo80
PublicaciónElectronic Journal of Probability
Volumen28
DOI
EstadoPublicada - 2023

Áreas temáticas de ASJC Scopus

  • Estadística y probabilidad
  • Estadística, probabilidad e incerteza

Huella

Profundice en los temas de investigación de 'Chaos for rescaled measures on Kac’s sphere'. En conjunto forman una huella única.

Citar esto