Causal Graph: Interpretation of Causal Relationships in Temporary Deviations of Business Processes

Fernando Montoya, Hernan Astudillo

Producción científica: Contribución a los tipos de informe/libroContribución a la conferenciarevisión exhaustiva

Resumen

Process deviations can be difficult and costly to identify. Therefore, it's imperative for organizations to detect temporary deviations during execution and understand their causal relationships. This enables decision-makers to implement targeted corrective actions. This article presents a method to construct a causal graph for the analysis of process variants, combining techniques from process mining, unsupervised machine learning, and causal discovery and inference. This graph is not susceptible to Simpson's paradox, where aggregating the feature space can lead to incorrect interpretations of causal effects. The technique has been initially validated with a well-known event log, namely a loan application process taken from the BPI Challenge 2017 and containing 16,299 records. This pilot run successfully identified the causal variables and their direction. Wider use of this approach will allow organizations to interpret and estimate the causal effect of an action plan on process variants with temporary deviations.

Idioma originalInglés
Título de la publicación alojadaProceedings - 2023 49th Latin American Computing Conference, CLEI 2023
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350318876
DOI
EstadoPublicada - 2023
Evento49th Latin American Computing Conference, CLEI 2023 - La Paz, Estado Plurinacional de Bolivia
Duración: 16 oct. 202320 oct. 2023

Serie de la publicación

NombreProceedings - 2023 49th Latin American Computing Conference, CLEI 2023

Conferencia

Conferencia49th Latin American Computing Conference, CLEI 2023
País/TerritorioEstado Plurinacional de Bolivia
CiudadLa Paz
Período16/10/2320/10/23

Áreas temáticas de ASJC Scopus

  • Inteligencia artificial
  • Redes de ordenadores y comunicaciones
  • Informática aplicada
  • Matemática computacional
  • Radiología, medicina nuclear y obtención de imágenes

Huella

Profundice en los temas de investigación de 'Causal Graph: Interpretation of Causal Relationships in Temporary Deviations of Business Processes'. En conjunto forman una huella única.

Citar esto