Resumen
The control of parameters during the execution of evolutionary algorithms is an open research area. In this paper, we propose new parameter control strategies for evolutionary approaches, based on reinforcement learning ideas. Our approach provides efficient and low cost adaptive techniques for parameter control. Moreover, it is a general method, thus it could be applied to any evolutionary approach having more than one operator. We contrast our results with tuning techniques and HAEA a random parameter control.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | 2007 IEEE Congress on Evolutionary Computation, CEC 2007 |
Páginas | 394-399 |
Número de páginas | 6 |
DOI | |
Estado | Publicada - 1 dic. 2007 |
Evento | 2007 IEEE Congress on Evolutionary Computation, CEC 2007 - , Singapur Duración: 25 sep. 2007 → 28 sep. 2007 |
Conferencia
Conferencia | 2007 IEEE Congress on Evolutionary Computation, CEC 2007 |
---|---|
País/Territorio | Singapur |
Período | 25/09/07 → 28/09/07 |
Áreas temáticas de ASJC Scopus
- Inteligencia artificial
- Software
- Ciencia computacional teórica