TY - GEN
T1 - C-di-GMP pathway in biomining bacteria
AU - Castro, M.
AU - Ruíz, L. M.
AU - Barriga, A.
AU - Jerez, C. A.
AU - Holmes, D.
AU - Guiliani, N.
N1 - Copyright:
Copyright 2010 Elsevier B.V., All rights reserved.
PY - 2009
Y1 - 2009
N2 - Acidithiobacillus ferrooxidans, A. thiooxidans, and A. caldus are acidophilic Gramnegative g-proteobacteria involved in the bioleaching of metal sulfides. Bacterial attachment to mineral surface and biofilm development play a pivotal role in this process. Therefore, the understanding of biofilm formation has relevance to the design of biological strategies to improve the efficiency of bioleaching processes. For this reason, our laboratory is focused on the characterization of the molecular mechanisms involved in biofilm formation in biomining bacteria. In many bacteria, the intracellular level of c-di-GMP molecules regulates the transition from the motile planktonic state to sessile community-based behaviors, such as biofilm development. Thus, we recently started the study of c-di-GMP pathway in biomining bacteria. C-di-GMP molecules are synthesized by diguanylate cyclases (DGCs) and degraded by phosphodiesterases (PDEs). So far, two kinds of effectors have been identified, including three protein families (pilZ, PleD and FleQ) and a conserved RNA domain (GEMM) which acts as a riboswitch. We previously reported the existence of different molecular players involved in c-di-GMP pathway in A. ferrooxidans ATCC 23270. Here, we expanded our work to other Acidithioibacillus species: A. thiooxidans ATCC 19377 and A. caldus ATCC 51756. In both, we identified several putative-ORFs encoding DGC, PDE and effector proteins. By using total RNA extracted from A. ferrooxidans and A. caldus cells in RT-PCR and qPCR experiments, we demonstrated that these genes are expressed. In addition, we characterized the presence of c-di-GMP in A. ferrooxidans ATCC 23270 and A. caldus ATCC 51756 cell extracts. Taken together, these results strongly suggest that A. ferrooxidans, A. caldus and A. thiooxidans possess functional c-di-GMP pathways. As it occurs in other Gram-negative bacteria, this pathway should be involved in the regulation of the planktonic/biofilm switch. In the future, we have to integrate this new biological dimension to improve the biological understanding of bioleaching.
AB - Acidithiobacillus ferrooxidans, A. thiooxidans, and A. caldus are acidophilic Gramnegative g-proteobacteria involved in the bioleaching of metal sulfides. Bacterial attachment to mineral surface and biofilm development play a pivotal role in this process. Therefore, the understanding of biofilm formation has relevance to the design of biological strategies to improve the efficiency of bioleaching processes. For this reason, our laboratory is focused on the characterization of the molecular mechanisms involved in biofilm formation in biomining bacteria. In many bacteria, the intracellular level of c-di-GMP molecules regulates the transition from the motile planktonic state to sessile community-based behaviors, such as biofilm development. Thus, we recently started the study of c-di-GMP pathway in biomining bacteria. C-di-GMP molecules are synthesized by diguanylate cyclases (DGCs) and degraded by phosphodiesterases (PDEs). So far, two kinds of effectors have been identified, including three protein families (pilZ, PleD and FleQ) and a conserved RNA domain (GEMM) which acts as a riboswitch. We previously reported the existence of different molecular players involved in c-di-GMP pathway in A. ferrooxidans ATCC 23270. Here, we expanded our work to other Acidithioibacillus species: A. thiooxidans ATCC 19377 and A. caldus ATCC 51756. In both, we identified several putative-ORFs encoding DGC, PDE and effector proteins. By using total RNA extracted from A. ferrooxidans and A. caldus cells in RT-PCR and qPCR experiments, we demonstrated that these genes are expressed. In addition, we characterized the presence of c-di-GMP in A. ferrooxidans ATCC 23270 and A. caldus ATCC 51756 cell extracts. Taken together, these results strongly suggest that A. ferrooxidans, A. caldus and A. thiooxidans possess functional c-di-GMP pathways. As it occurs in other Gram-negative bacteria, this pathway should be involved in the regulation of the planktonic/biofilm switch. In the future, we have to integrate this new biological dimension to improve the biological understanding of bioleaching.
KW - Acidithiobacillus
KW - Biofilm
KW - Biomining
KW - c-di-GMP
UR - http://www.scopus.com/inward/record.url?scp=72449174237&partnerID=8YFLogxK
U2 - 10.4028/www.scientific.net/AMR.71-73.223
DO - 10.4028/www.scientific.net/AMR.71-73.223
M3 - Conference contribution
AN - SCOPUS:72449174237
SN - 0878493220
SN - 9780878493227
T3 - Advanced Materials Research
SP - 223
EP - 226
BT - Biohydrometallurgy 2009
T2 - 18th International Biohydrometallurgy Symposium, IBS 2009
Y2 - 13 September 2009 through 17 September 2009
ER -