ATLAS flavour-tagging algorithms for the LHC Run 2 pp collision dataset

ATLAS Collaboration

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

5 Citas (Scopus)

Resumen

The flavour-tagging algorithms developed by the ATLAS Collaboration and used to analyse its dataset of s=13 TeV pp collisions from Run 2 of the Large Hadron Collider are presented. These new tagging algorithms are based on recurrent and deep neural networks, and their performance is evaluated in simulated collision events. These developments yield considerable improvements over previous jet-flavour identification strategies. At the 77% b-jet identification efficiency operating point, light-jet (charm-jet) rejection factors of 170 (5) are achieved in a sample of simulated Standard Model tt¯ events; similarly, at a c-jet identification efficiency of 30%, a light-jet (b-jet) rejection factor of 70 (9) is obtained.

Idioma originalInglés
Número de artículo681
PublicaciónEuropean Physical Journal C
Volumen83
N.º7
DOI
EstadoPublicada - jul. 2023

Áreas temáticas de ASJC Scopus

  • Ingeniería (miscelánea)
  • Física y astronomía (miscelánea)

Huella

Profundice en los temas de investigación de 'ATLAS flavour-tagging algorithms for the LHC Run 2 pp collision dataset'. En conjunto forman una huella única.

Citar esto