Are state-of-the-art fine-tuning algorithms able to detect a dummy parameter?

Elizabeth Montero, María Cristina Riff, Leslie Pérez-Caceres, Carlos A. Coello Coello

Resultado de la investigación: Contribución a los tipos de informe/libroContribución a la conferencia

5 Citas (Scopus)

Resumen

Currently, there exist several offline calibration techniques that can be used to fine-tune the parameters of a metaheuristic. Such techniques require, however, to perform a considerable number of independent runs of the metaheuristic in order to obtain meaningful information. Here, we are interested on the use of this information for assisting the algorithm designer to discard components of a metaheuristic (e.g., an evolutionary operator) that do not contribute to improving its performance (we call them "ineffective components"). In our study, we experimentally analyze the information obtained from three offline calibration techniques: F-Race, ParamILS and Revac. Our preliminary results indicate that these three calibration techniques provide different types of information, which makes it necessary to conduct a more in-depth analysis of the data obtained, in order to detect the ineffective components that are of our interest.

Idioma originalInglés
Título de la publicación alojadaParallel Problem Solving from Nature, PPSN XII - 12th International Conference, Proceedings
Páginas306-315
Número de páginas10
EdiciónPART 1
DOI
EstadoPublicada - 24 sep 2012
Evento12th International Conference on Parallel Problem Solving from Nature, PPSN 2012 - Taormina, Italia
Duración: 1 sep 20125 sep 2012

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NúmeroPART 1
Volumen7491 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia12th International Conference on Parallel Problem Solving from Nature, PPSN 2012
PaísItalia
CiudadTaormina
Período1/09/125/09/12

Áreas temáticas de ASJC Scopus

  • Ciencia computacional teórica
  • Informática (todo)

Huella Profundice en los temas de investigación de 'Are state-of-the-art fine-tuning algorithms able to detect a dummy parameter?'. En conjunto forman una huella única.

  • Citar esto

    Montero, E., Riff, M. C., Pérez-Caceres, L., & Coello Coello, C. A. (2012). Are state-of-the-art fine-tuning algorithms able to detect a dummy parameter? En Parallel Problem Solving from Nature, PPSN XII - 12th International Conference, Proceedings (PART 1 ed., pp. 306-315). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 7491 LNCS, N.º PART 1). https://doi.org/10.1007/978-3-642-32937-1_31