TY - JOUR
T1 - Anisotropic correlation functions as tracers of central galaxy alignments in simulations
AU - Rodriguez, Facundo
AU - Merchán, Manuel
AU - Artale, M. Celeste
AU - Andrews, Moira
N1 - Publisher Copyright:
© 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.
PY - 2023/6/1
Y1 - 2023/6/1
N2 - Motivated by observational results, we use IllustrisTNG hydrodynamical numerical simulations to study the alignment of the central galaxies in groups with the surrounding structures. This approach allows us to analyse galaxy and group properties not available in observations. To perform this analysis, we use a modified version of the two-point cross-correlation function and a measure of the angle between the semimajor axes of the central galaxies and the larger structures. Overall, our results reproduce observational ones, as we find large-scale anisotropy, which is dominated by the red central galaxies. In addition, the latter is noticeably more aligned with their group than the blue ones. In contrast to the observations, we find a strong dependence of the anisotropy on the central galaxy with mass, probably associated with the inability of observational methods to determine them. This result allows us to link the alignment to the process of halo assembly and the well-known dependence of halo anisotropy on mass. When we include the dark matter distribution in our analysis, we conclude that the galaxy alignment found in simulations (and observations) can be explained by a combination of physical processes at different scales: the central galaxy aligns with the dark matter halo it inhabits, and this, in turn, aligns with the surrounding structures at large scales.
AB - Motivated by observational results, we use IllustrisTNG hydrodynamical numerical simulations to study the alignment of the central galaxies in groups with the surrounding structures. This approach allows us to analyse galaxy and group properties not available in observations. To perform this analysis, we use a modified version of the two-point cross-correlation function and a measure of the angle between the semimajor axes of the central galaxies and the larger structures. Overall, our results reproduce observational ones, as we find large-scale anisotropy, which is dominated by the red central galaxies. In addition, the latter is noticeably more aligned with their group than the blue ones. In contrast to the observations, we find a strong dependence of the anisotropy on the central galaxy with mass, probably associated with the inability of observational methods to determine them. This result allows us to link the alignment to the process of halo assembly and the well-known dependence of halo anisotropy on mass. When we include the dark matter distribution in our analysis, we conclude that the galaxy alignment found in simulations (and observations) can be explained by a combination of physical processes at different scales: the central galaxy aligns with the dark matter halo it inhabits, and this, in turn, aligns with the surrounding structures at large scales.
KW - dark matter
KW - Galaxies: groups: general
KW - galaxies: haloes
KW - large-scale structure of Universe
KW - methods: statistical
UR - http://www.scopus.com/inward/record.url?scp=85154046054&partnerID=8YFLogxK
U2 - 10.1093/mnras/stad924
DO - 10.1093/mnras/stad924
M3 - Article
AN - SCOPUS:85154046054
SN - 0035-8711
VL - 521
SP - 5483
EP - 5491
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 4
ER -