### Resumen

We provide Vasilievs fully nonlinear equations of motion for bosonic higher spin gauge fields in four spacetime dimensions with an action principle. We first extend Vasilievs original system with differential forms in degrees higher than 1. We then derive the resulting duality-extended equations of motion from a variational principle based on a generalized Hamiltonian sigma-model action. The generalized Hamiltonian contains two types of interaction freedoms: one, a set of functions that appears in the Q-structure of the generalized curvatures of the odd forms in the duality-extended system; and the other, a set depending on the Lagrange multipliers, encoding a generalized Poisson structure, i.e. a set of polyvector fields of rank 2 or higher in target space. We find that at least one of the two sets of interaction-freedom functions must be linear in order to ensure gauge invariance. We discuss consistent truncations to the minimal type A and B models (with only even spins), spectral flows on-shell and provide boundary conditions on fields and gauge parameters that are compatible with the variational principle and that make the duality-extended system equivalent, on-shell, to Vasilievs original system.

Idioma original | Inglés |
---|---|

Número de artículo | 495402 |

Publicación | Journal of Physics A: Mathematical and Theoretical |

Volumen | 44 |

N.º | 49 |

DOI | |

Estado | Publicada - 9 dic 2011 |

### Huella digital

### Áreas temáticas de ASJC Scopus

- Física estadística y no lineal
- Estadística y probabilidad
- Modelización y simulación
- Física matemática
- Física y astronomía (todo)