A Statistics-Based Dynamic Sequential Model Predictive Control for Induction Motor Drives

Tianyi Wang, Yongdu Wang, Xingtao Wang, Minghao Han, Jose Rodriguez, Zhenbin Zhang

Resultado de la investigación: Contribución a los tipos de informe/libroContribución a la conferenciarevisión exhaustiva

Resumen

Determining appropriate weighting factors is a key issue in finite control set model predictive control (FCS-MPC). The sequential model predictive control (SMPC) transforms the continuous weighting factors into fixed discrete optimization sequence and number of voltage vectors. In order to make these two parameters dynamic, this paper proposes a statistics-based dynamic sequential model predictive control scheme (Statistics-Based SMPC) for induction motor (IM) drives. This scheme focuses on the statistical characteristics of the cost function values, and uses the entropy weight method to dynamically determine the weight of the control targets, so that the optimization sequence can be dynamically changed with different working conditions. Another advantage of this scheme is that it is not limited by the number of control targets. Therefore, it has the potential to extend the cascade structure MPC without weighting factors to multiple control targets. Matlab/Simulink simulation verifies the effectiveness of the proposed method.

Idioma originalInglés
Título de la publicación alojada6th IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics, PRECEDE 2021
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas513-518
Número de páginas6
ISBN (versión digital)9781665425575
DOI
EstadoPublicada - 2021
Evento6th IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics, PRECEDE 2021 - Jinan, China
Duración: 20 nov. 202122 nov. 2021

Serie de la publicación

Nombre6th IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics, PRECEDE 2021

Conferencia

Conferencia6th IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics, PRECEDE 2021
País/TerritorioChina
CiudadJinan
Período20/11/2122/11/21

Áreas temáticas de ASJC Scopus

  • Ingeniería eléctrica y electrónica
  • Ingeniería mecánica
  • Control y optimización
  • Ingeniería energética y tecnologías de la energía
  • Ingeniería de control y sistemas

Huella

Profundice en los temas de investigación de 'A Statistics-Based Dynamic Sequential Model Predictive Control for Induction Motor Drives'. En conjunto forman una huella única.

Citar esto