A remark on the topological entropies of covers and partitions

Resultado de la investigación: Article

Resumen

We study if the combinatorial entropy of a finite cover can be computed using finite partitions finer than the cover. This relates to an unsolved question in [R] for open covers. We explicitly compute the topological entropy of a fixed clopen cover showing that it is smaller than the infimum of the topological entropy of all finer clopen partitions.

Idioma originalEnglish
Páginas (desde-hasta)273-281
Número de páginas9
PublicaciónStudia Mathematica
Volumen182
N.º3
DOI
EstadoPublished - 2007

Huella dactilar

Topological Entropy
Partition
Cover
Open cover
Entropy

ASJC Scopus subject areas

  • Mathematics(all)

Citar esto

@article{ffbe6707883a46cd8d6f9c5d5bbb3cb9,
title = "A remark on the topological entropies of covers and partitions",
abstract = "We study if the combinatorial entropy of a finite cover can be computed using finite partitions finer than the cover. This relates to an unsolved question in [R] for open covers. We explicitly compute the topological entropy of a fixed clopen cover showing that it is smaller than the infimum of the topological entropy of all finer clopen partitions.",
keywords = "Local variational principle, Symbolic dynamics, Topological entropy, Total domination",
author = "Romagnoli, {Pierre Paul}",
year = "2007",
doi = "10.4064/sm182-3-6",
language = "English",
volume = "182",
pages = "273--281",
journal = "Studia Mathematica",
issn = "0039-3223",
publisher = "Instytut Matematyczny",
number = "3",

}

A remark on the topological entropies of covers and partitions. / Romagnoli, Pierre Paul.

En: Studia Mathematica, Vol. 182, N.º 3, 2007, p. 273-281.

Resultado de la investigación: Article

TY - JOUR

T1 - A remark on the topological entropies of covers and partitions

AU - Romagnoli, Pierre Paul

PY - 2007

Y1 - 2007

N2 - We study if the combinatorial entropy of a finite cover can be computed using finite partitions finer than the cover. This relates to an unsolved question in [R] for open covers. We explicitly compute the topological entropy of a fixed clopen cover showing that it is smaller than the infimum of the topological entropy of all finer clopen partitions.

AB - We study if the combinatorial entropy of a finite cover can be computed using finite partitions finer than the cover. This relates to an unsolved question in [R] for open covers. We explicitly compute the topological entropy of a fixed clopen cover showing that it is smaller than the infimum of the topological entropy of all finer clopen partitions.

KW - Local variational principle

KW - Symbolic dynamics

KW - Topological entropy

KW - Total domination

UR - http://www.scopus.com/inward/record.url?scp=36649000445&partnerID=8YFLogxK

U2 - 10.4064/sm182-3-6

DO - 10.4064/sm182-3-6

M3 - Article

AN - SCOPUS:36649000445

VL - 182

SP - 273

EP - 281

JO - Studia Mathematica

JF - Studia Mathematica

SN - 0039-3223

IS - 3

ER -