TY - JOUR
T1 - A quasar microlensing light-curve generator for LSST
AU - Neira, Favio
AU - Anguita, Timo
AU - Vernardos, Georgios
N1 - Publisher Copyright:
© 2020 The Author(s).
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/6/1
Y1 - 2020/6/1
N2 - We present a tool to generate mock quasar microlensing light curves and sample them according to any observing strategy. An updated treatment of the fixed and random velocity components of observer, lens, and source is used, together with a proper alignment with the external shear defining the magnification map caustic orientation. Our tool produces quantitative results on high magnification events and caustic crossings, which we use to study three lensed quasars known to display microlensing, viz. RX J1131–1231, HE 0230–2130, and Q 2237+0305, as they would be monitored by The Rubin Observatory Legacy Survey of Space and Time (LSST). We conclude that depending on the location on the sky, the lens and source redshift, and the caustic network density, the microlensing variability may deviate significantly than the expected ∼20-yr average time-scale (Mosquera & Kochanek 2011). We estimate that ∼300 high magnification events with Δmag>1 mag could potentially be observed by LSST each year. The duration of the majority of high magnification events is between 10 and 100 d, requiring a very high cadence to capture and resolve them. Uniform LSST observing strategies perform the best in recovering microlensing high magnification events. Our web tool can be extended to any instrument and observing strategy, and is freely available as a service at http://gerlumph.swin.edu.au/tools/lsst generator/, along with all the related code.
AB - We present a tool to generate mock quasar microlensing light curves and sample them according to any observing strategy. An updated treatment of the fixed and random velocity components of observer, lens, and source is used, together with a proper alignment with the external shear defining the magnification map caustic orientation. Our tool produces quantitative results on high magnification events and caustic crossings, which we use to study three lensed quasars known to display microlensing, viz. RX J1131–1231, HE 0230–2130, and Q 2237+0305, as they would be monitored by The Rubin Observatory Legacy Survey of Space and Time (LSST). We conclude that depending on the location on the sky, the lens and source redshift, and the caustic network density, the microlensing variability may deviate significantly than the expected ∼20-yr average time-scale (Mosquera & Kochanek 2011). We estimate that ∼300 high magnification events with Δmag>1 mag could potentially be observed by LSST each year. The duration of the majority of high magnification events is between 10 and 100 d, requiring a very high cadence to capture and resolve them. Uniform LSST observing strategies perform the best in recovering microlensing high magnification events. Our web tool can be extended to any instrument and observing strategy, and is freely available as a service at http://gerlumph.swin.edu.au/tools/lsst generator/, along with all the related code.
KW - Accretion
KW - Accretion discs
KW - Gravitational lensing: Micro
KW - HE 0230–2130
KW - Q 2237+0305
KW - Quasars: General
KW - Quasars: Individual: RX J1131–1231
UR - http://www.scopus.com/inward/record.url?scp=85095520733&partnerID=8YFLogxK
U2 - 10.1093/mnras/staa1208
DO - 10.1093/mnras/staa1208
M3 - Article
SN - 0035-8711
VL - 495
SP - 544
EP - 553
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 1
ER -