A proposal for supervised clustering with Dirichlet Process using labels

Billy Peralta, Alberto Caro, Alvaro Soto

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

4 Citas (Scopus)

Resumen

Supervised clustering is an emerging area of machine learning, where the goal is to find class-uniform clusters. However, typical state-of-the-art algorithms use a fixed number of clusters. In this work, we propose a variation of a non-parametric Bayesian modeling for supervised clustering. Our approach consists of modeling the clusters as a mixture of Gaussians with the constraint of encouraging clusters of points with the same label. In order to estimate the number of clusters, we assume a-priori a countably infinite number of clusters using a variation of Dirichlet Process model over the prior distribution. In our experiments, we show that our technique typically outperforms the results of other clustering techniques.

Idioma originalInglés
Páginas (desde-hasta)52-57
Número de páginas6
PublicaciónPattern Recognition Letters
Volumen80
DOI
EstadoPublicada - 1 sep. 2016

Áreas temáticas de ASJC Scopus

  • Software
  • Procesamiento de senales
  • Visión artificial y reconocimiento de patrones
  • Inteligencia artificial

Huella

Profundice en los temas de investigación de 'A proposal for supervised clustering with Dirichlet Process using labels'. En conjunto forman una huella única.

Citar esto