A novel hybrid model-based MPPT algorithm based on artificial neural networks for photovoltaic applications

Mahyar Khosravi, Saeed Heshmatian, Davood A. Khaburi, Cristian Garcia, Jose Rodriguez

Resultado de la investigación: Contribución a los tipos de informe/libroContribución a la conferencia

3 Citas (Scopus)

Resumen

In this paper, a novel hybrid Maximum Power Point Tracking (MPPT) strategy has been proposed. This algorithm employs an idea similar to the Fractional Short Circuit Current (FSCC) method in order to improve the performance of the conventional Perturbation and Observation (P&O) algorithm. It should be considered that in the conventional FSCC method, the short circuit current needs to be measured at different time instances and hence, the power generated by PV module is not permanently delivered to the load. In the proposed strategy, a model of the PV cell is obtained based on a Multi-Layer Perceptron (MLP) structure. Then, the PV short circuit current is easily approximated using this model and is employed as an auxiliary information for the conventional P&O algorithm in order to simultaneously achieve fast and accurate tracking performance. The output of the proposed algorithm is the reference current value which is then fed to a predictive controller used to control the DC-DC boost converter placed between the PV cell and the load. Finally, the system is simulated in the MATLAB/Simulink environment. The simulation results verify the appropriate performance of the proposed method.

Idioma originalInglés
Título de la publicación alojadaProceedings - 2017 IEEE Southern Power Electronics Conference, SPEC 2017
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas1-6
Número de páginas6
Volumen2018-January
ISBN (versión digital)9781509064250
DOI
EstadoPublicada - 6 abr 2018
Evento2017 IEEE Southern Power Electronics Conference, SPEC 2017 - Puerto Varas, Chile
Duración: 4 dic 20177 dic 2017

Conferencia

Conferencia2017 IEEE Southern Power Electronics Conference, SPEC 2017
PaísChile
CiudadPuerto Varas
Período4/12/177/12/17

Áreas temáticas de ASJC Scopus

  • Ingeniería eléctrica y electrónica
  • Ingeniería energética y tecnologías de la energía

Huella Profundice en los temas de investigación de 'A novel hybrid model-based MPPT algorithm based on artificial neural networks for photovoltaic applications'. En conjunto forman una huella única.

  • Citar esto

    Khosravi, M., Heshmatian, S., Khaburi, D. A., Garcia, C., & Rodriguez, J. (2018). A novel hybrid model-based MPPT algorithm based on artificial neural networks for photovoltaic applications. En Proceedings - 2017 IEEE Southern Power Electronics Conference, SPEC 2017 (Vol. 2018-January, pp. 1-6). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/SPEC.2017.8333579