A novel Bayesian reconstruction of the configurational density of states

Felipe Moreno, Sergio Davis, Joaquín Peralta, Simón Poblete

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

In this work, we present the development and implementation of a novel Bayesian method for the reconstruction of the density of states (DOS) of a system using energy data obtained from Monte Carlo simulations. This method uses a trial family of functions with adjustable parameters, which are optimized using the Bayes theorem. The measurements can be done in any ensemble with a known distribution function, which significantly helps to overcome energy traps and explore the conformation space thoroughly. We apply our algorithm on a test Potts model system and find that our implementation can find the correct DOS in a reasonable amount of time. Moreover, if the trial function is suitable enough, the DOS found by the algorithm is very close to the actual DOS.

Idioma originalInglés
Número de artículo112326
PublicaciónComputational Materials Science
Volumen228
DOI
EstadoPublicada - sep. 2023

Áreas temáticas de ASJC Scopus

  • Ciencia de la Computación General
  • Química General
  • Ciencia de los Materiales General
  • Mecánica de materiales
  • Física y Astronomía General
  • Matemática computacional

Huella

Profundice en los temas de investigación de 'A novel Bayesian reconstruction of the configurational density of states'. En conjunto forman una huella única.

Citar esto