A Nested-Cascade Machine Learning Based Model for Intrusion Detection Systems

Romina Torres, Miguel A. Solis, Vicente Martinez, Rodrigo Salas

Producción científica: Contribución a los tipos de informe/libroContribución a la conferenciarevisión exhaustiva

Resumen

In datasets, the preponderance of imbalanced classes impedes accurate cyberattack categorization. While high aggregate accuracy is sought, it's paramount to adeptly classify all attack types, especially the under-represented ones. Existing methodologies, such as Ensemble techniques and the Synthetic Minority Oversampling Technique (SMOTE), address these disparities, yet the dynamic nature of underrepresented cyberattacks in cybersecurity remains a concern. To address this, we introduce a nested cascade model tailored for diverse cyberattacks within imbalanced datasets. This model leverages binary classifiers across tiers, each targeting a specific attack type. Before initializing the cascade, SMOTE is applied to counterbalance class disparities. The cascade's classification sequence employs a dual strategy: an initial one-vs-all binary classifier approach for pending classes, followed by prioritization based on model performance. We assessed our approach using the UNSW-NB15 dataset. Preliminary results indicate approximately 80% efficiency across metrics like accuracy, recall, and Fl-score. Notably, SMOTE's in- tegration yielded significant improvements for underrepresented classes.

Idioma originalInglés
Título de la publicación alojadaChileCon 2023 - 2023 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350369533
DOI
EstadoPublicada - 2023
Evento2023 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, ChileCon 2023 - Hybrid, Valdivia, Chile
Duración: 5 dic. 20237 dic. 2023

Serie de la publicación

NombreProceedings - IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, ChileCon
ISSN (versión impresa)2832-1529
ISSN (versión digital)2832-1537

Conferencia

Conferencia2023 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, ChileCon 2023
País/TerritorioChile
CiudadHybrid, Valdivia
Período5/12/237/12/23

Áreas temáticas de ASJC Scopus

  • Inteligencia artificial
  • Redes de ordenadores y comunicaciones
  • Hardware y arquitectura
  • Sistemas de información
  • Gestión y sistemas de información
  • Ingeniería energética y tecnologías de la energía
  • Ingeniería eléctrica y electrónica
  • Control y optimización

Huella

Profundice en los temas de investigación de 'A Nested-Cascade Machine Learning Based Model for Intrusion Detection Systems'. En conjunto forman una huella única.

Citar esto