A Machine Learning Suite to Halo-Galaxy Connection

Natalí S.M.de Santi, Natália V.N. Rodrigues, Antonio D. Montero-Dorta, L. Raul Abramo, Beatriz Tucci, M. Celeste Artale

Producción científica: Contribución a los tipos de informe/libroContribución a la conferenciarevisión exhaustiva

Resumen

As far as we know, galaxies form inside dark matter halos and elucidating this connection is a key element in theories of galaxy formation and evolution. In this work we propose a suite of machine learning tools to predict baryonic from halo properties in the IllustrisTNG300 magnetohydrodynamical simulation. We apply four methods: extremely randomized trees, K-nearest neighbors, light gradient boosting machine, and neural networks. Moreover, we combine the results of them in a stacked model. In addition, we apply all these methods in an augmented dataset using the synthetic minority over-sampling technique for regression with Gaussian noise, to deal with the problem of imbalanced data sets. Altogether, the ML algorithms are consistent at predicting central galaxy properties from a set of input halo properties such as halo mass, concentration, spin, and halo overdensity. For stellar mass, the Pearson correlation coefficient is 0.98, while for specific star formation rate, color, and size it is between 0.7–0.8. Lastly, the presented analysis adds evidence to previous works indicating that certain galaxy properties cannot be reproduced using halo features alone.

Idioma originalInglés
Título de la publicación alojadaMachine Learning for Astrophysics - Proceedings of the ML4Astro International Conference
EditoresFilomena Bufano, Simone Riggi, Eva Sciacca, Francesco Schilliro
EditorialSpringer Science and Business Media B.V.
Páginas31-34
Número de páginas4
ISBN (versión impresa)9783031341663
DOI
EstadoPublicada - 2023
Publicado de forma externa
Evento1st International Conference on Machine Learning for Astrophysics, ML4ASTRO 2022 - Catania, Italia
Duración: 30 may. 20221 jun. 2022

Serie de la publicación

NombreAstrophysics and Space Science Proceedings
Volumen60
ISSN (versión impresa)1570-6591
ISSN (versión digital)1570-6605

Conferencia

Conferencia1st International Conference on Machine Learning for Astrophysics, ML4ASTRO 2022
País/TerritorioItalia
CiudadCatania
Período30/05/221/06/22

Áreas temáticas de ASJC Scopus

  • Física y Astronomía General
  • Informática aplicada
  • Espectroscopia
  • Ciencias planetarias y espacial
  • Física nuclear y de alta energía

Huella

Profundice en los temas de investigación de 'A Machine Learning Suite to Halo-Galaxy Connection'. En conjunto forman una huella única.

Citar esto