A kilonova as the electromagnetic counterpart to a gravitational-wave source

S. J. Smartt, T. W. Chen, A. Jerkstrand, M. Coughlin, E. Kankare, S. A. Sim, M. Fraser, C. Inserra, K. Maguire, K. C. Chambers, M. E. Huber, T. Krühler, G. Leloudas, M. Magee, L. J. Shingles, K. W. Smith, D. R. Young, J. Tonry, R. Kotak, A. Gal-YamJ. D. Lyman, D. S. Homan, C. Agliozzo, J. P. Anderson, C. R. Angus, C. Ashall, C. Barbarino, F. E. Bauer, M. Berton, M. T. Botticella, M. Bulla, J. Bulger, G. Cannizzaro, Z. Cano, R. Cartier, A. Cikota, P. Clark, A. De Cia, M. Della Valle, L. Denneau, M. Dennefeld, L. Dessart, G. Dimitriadis, N. Elias-Rosa, R. E. Firth, H. Flewelling, A. Flörs, A. Franckowiak, C. Frohmaier, L. Galbany, S. González-Gaitán, J. Greiner, M. Gromadzki, A. Nicuesa Guelbenzu, C. P. Gutiérrez, A. Hamanowicz, L. Hanlon, J. Harmanen, K. E. Heintz, A. Heinze, M. S. Hernandez, S. T. Hodgkin, I. M. Hook, L. Izzo, P. A. James, P. G. Jonker, W. E. Kerzendorf, S. Klose, Z. Kostrzewa-Rutkowska, M. Kowalski, M. Kromer, H. Kuncarayakti, A. Lawrence, T. B. Lowe, E. A. Magnier, I. Manulis, A. Martin-Carrillo, S. Mattila, O. McBrien, A. Müller, J. Nordin, D. O'Neill, F. Onori, J. T. Palmerio, A. Pastorello, F. Patat, G. Pignata, P. Podsiadlowski, M. L. Pumo, S. J. Prentice, A. Rau, A. Razza, A. Rest, T. Reynolds, R. Roy, A. J. Ruiter, K. A. Rybicki, L. Salmon, P. Schady, A. S.B. Schultz, T. Schweyer, I. R. Seitenzahl, M. Smith, J. Sollerman, B. Stalder, C. W. Stubbs, M. Sullivan, H. Szegedi, F. Taddia, S. Taubenberger, G. Terreran, B. Van Soelen, J. Vos, R. J. Wainscoat, N. A. Walton, C. Waters, H. Weiland, M. Willman, P. Wiseman, D. E. Wright, L. Wyrzykowski, O. Yaron

Resultado de la investigación: Article

205 Citas (Scopus)

Resumen

Gravitational waves were discovered with the detection of binary black-hole mergers1 and they should also be detectable from lowermass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova2-5. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate6. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst7,8. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.

Idioma originalEnglish
Páginas (desde-hasta)75-79
Número de páginas5
PublicaciónNature
Volumen551
N.º7678
DOI
EstadoPublished - 2 nov 2017

Huella dactilar

gravitational waves
neutron stars
electromagnetism
opacity
light speed
atomic weights
binary stars
heavy elements
fading
ejecta
nuclides
radioactive isotopes
sky
rays
electromagnetic radiation
universe
slopes
galaxies
iron
neutrons

ASJC Scopus subject areas

  • General

Citar esto

Smartt, S. J., Chen, T. W., Jerkstrand, A., Coughlin, M., Kankare, E., Sim, S. A., ... Yaron, O. (2017). A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature, 551(7678), 75-79. https://doi.org/10.1038/nature24303
Smartt, S. J. ; Chen, T. W. ; Jerkstrand, A. ; Coughlin, M. ; Kankare, E. ; Sim, S. A. ; Fraser, M. ; Inserra, C. ; Maguire, K. ; Chambers, K. C. ; Huber, M. E. ; Krühler, T. ; Leloudas, G. ; Magee, M. ; Shingles, L. J. ; Smith, K. W. ; Young, D. R. ; Tonry, J. ; Kotak, R. ; Gal-Yam, A. ; Lyman, J. D. ; Homan, D. S. ; Agliozzo, C. ; Anderson, J. P. ; Angus, C. R. ; Ashall, C. ; Barbarino, C. ; Bauer, F. E. ; Berton, M. ; Botticella, M. T. ; Bulla, M. ; Bulger, J. ; Cannizzaro, G. ; Cano, Z. ; Cartier, R. ; Cikota, A. ; Clark, P. ; De Cia, A. ; Della Valle, M. ; Denneau, L. ; Dennefeld, M. ; Dessart, L. ; Dimitriadis, G. ; Elias-Rosa, N. ; Firth, R. E. ; Flewelling, H. ; Flörs, A. ; Franckowiak, A. ; Frohmaier, C. ; Galbany, L. ; González-Gaitán, S. ; Greiner, J. ; Gromadzki, M. ; Nicuesa Guelbenzu, A. ; Gutiérrez, C. P. ; Hamanowicz, A. ; Hanlon, L. ; Harmanen, J. ; Heintz, K. E. ; Heinze, A. ; Hernandez, M. S. ; Hodgkin, S. T. ; Hook, I. M. ; Izzo, L. ; James, P. A. ; Jonker, P. G. ; Kerzendorf, W. E. ; Klose, S. ; Kostrzewa-Rutkowska, Z. ; Kowalski, M. ; Kromer, M. ; Kuncarayakti, H. ; Lawrence, A. ; Lowe, T. B. ; Magnier, E. A. ; Manulis, I. ; Martin-Carrillo, A. ; Mattila, S. ; McBrien, O. ; Müller, A. ; Nordin, J. ; O'Neill, D. ; Onori, F. ; Palmerio, J. T. ; Pastorello, A. ; Patat, F. ; Pignata, G. ; Podsiadlowski, P. ; Pumo, M. L. ; Prentice, S. J. ; Rau, A. ; Razza, A. ; Rest, A. ; Reynolds, T. ; Roy, R. ; Ruiter, A. J. ; Rybicki, K. A. ; Salmon, L. ; Schady, P. ; Schultz, A. S.B. ; Schweyer, T. ; Seitenzahl, I. R. ; Smith, M. ; Sollerman, J. ; Stalder, B. ; Stubbs, C. W. ; Sullivan, M. ; Szegedi, H. ; Taddia, F. ; Taubenberger, S. ; Terreran, G. ; Van Soelen, B. ; Vos, J. ; Wainscoat, R. J. ; Walton, N. A. ; Waters, C. ; Weiland, H. ; Willman, M. ; Wiseman, P. ; Wright, D. E. ; Wyrzykowski, L. ; Yaron, O. / A kilonova as the electromagnetic counterpart to a gravitational-wave source. En: Nature. 2017 ; Vol. 551, N.º 7678. pp. 75-79.
@article{7c0d230df7ed4acd961ac3cd305e1e32,
title = "A kilonova as the electromagnetic counterpart to a gravitational-wave source",
abstract = "Gravitational waves were discovered with the detection of binary black-hole mergers1 and they should also be detectable from lowermass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova2-5. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate6. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst7,8. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.",
author = "Smartt, {S. J.} and Chen, {T. W.} and A. Jerkstrand and M. Coughlin and E. Kankare and Sim, {S. A.} and M. Fraser and C. Inserra and K. Maguire and Chambers, {K. C.} and Huber, {M. E.} and T. Kr{\"u}hler and G. Leloudas and M. Magee and Shingles, {L. J.} and Smith, {K. W.} and Young, {D. R.} and J. Tonry and R. Kotak and A. Gal-Yam and Lyman, {J. D.} and Homan, {D. S.} and C. Agliozzo and Anderson, {J. P.} and Angus, {C. R.} and C. Ashall and C. Barbarino and Bauer, {F. E.} and M. Berton and Botticella, {M. T.} and M. Bulla and J. Bulger and G. Cannizzaro and Z. Cano and R. Cartier and A. Cikota and P. Clark and {De Cia}, A. and {Della Valle}, M. and L. Denneau and M. Dennefeld and L. Dessart and G. Dimitriadis and N. Elias-Rosa and Firth, {R. E.} and H. Flewelling and A. Fl{\"o}rs and A. Franckowiak and C. Frohmaier and L. Galbany and S. Gonz{\'a}lez-Gait{\'a}n and J. Greiner and M. Gromadzki and {Nicuesa Guelbenzu}, A. and Guti{\'e}rrez, {C. P.} and A. Hamanowicz and L. Hanlon and J. Harmanen and Heintz, {K. E.} and A. Heinze and Hernandez, {M. S.} and Hodgkin, {S. T.} and Hook, {I. M.} and L. Izzo and James, {P. A.} and Jonker, {P. G.} and Kerzendorf, {W. E.} and S. Klose and Z. Kostrzewa-Rutkowska and M. Kowalski and M. Kromer and H. Kuncarayakti and A. Lawrence and Lowe, {T. B.} and Magnier, {E. A.} and I. Manulis and A. Martin-Carrillo and S. Mattila and O. McBrien and A. M{\"u}ller and J. Nordin and D. O'Neill and F. Onori and Palmerio, {J. T.} and A. Pastorello and F. Patat and G. Pignata and P. Podsiadlowski and Pumo, {M. L.} and Prentice, {S. J.} and A. Rau and A. Razza and A. Rest and T. Reynolds and R. Roy and Ruiter, {A. J.} and Rybicki, {K. A.} and L. Salmon and P. Schady and Schultz, {A. S.B.} and T. Schweyer and Seitenzahl, {I. R.} and M. Smith and J. Sollerman and B. Stalder and Stubbs, {C. W.} and M. Sullivan and H. Szegedi and F. Taddia and S. Taubenberger and G. Terreran and {Van Soelen}, B. and J. Vos and Wainscoat, {R. J.} and Walton, {N. A.} and C. Waters and H. Weiland and M. Willman and P. Wiseman and Wright, {D. E.} and L. Wyrzykowski and O. Yaron",
year = "2017",
month = "11",
day = "2",
doi = "10.1038/nature24303",
language = "English",
volume = "551",
pages = "75--79",
journal = "Nature",
issn = "0028-0836",
publisher = "Nature Publishing Group",
number = "7678",

}

Smartt, SJ, Chen, TW, Jerkstrand, A, Coughlin, M, Kankare, E, Sim, SA, Fraser, M, Inserra, C, Maguire, K, Chambers, KC, Huber, ME, Krühler, T, Leloudas, G, Magee, M, Shingles, LJ, Smith, KW, Young, DR, Tonry, J, Kotak, R, Gal-Yam, A, Lyman, JD, Homan, DS, Agliozzo, C, Anderson, JP, Angus, CR, Ashall, C, Barbarino, C, Bauer, FE, Berton, M, Botticella, MT, Bulla, M, Bulger, J, Cannizzaro, G, Cano, Z, Cartier, R, Cikota, A, Clark, P, De Cia, A, Della Valle, M, Denneau, L, Dennefeld, M, Dessart, L, Dimitriadis, G, Elias-Rosa, N, Firth, RE, Flewelling, H, Flörs, A, Franckowiak, A, Frohmaier, C, Galbany, L, González-Gaitán, S, Greiner, J, Gromadzki, M, Nicuesa Guelbenzu, A, Gutiérrez, CP, Hamanowicz, A, Hanlon, L, Harmanen, J, Heintz, KE, Heinze, A, Hernandez, MS, Hodgkin, ST, Hook, IM, Izzo, L, James, PA, Jonker, PG, Kerzendorf, WE, Klose, S, Kostrzewa-Rutkowska, Z, Kowalski, M, Kromer, M, Kuncarayakti, H, Lawrence, A, Lowe, TB, Magnier, EA, Manulis, I, Martin-Carrillo, A, Mattila, S, McBrien, O, Müller, A, Nordin, J, O'Neill, D, Onori, F, Palmerio, JT, Pastorello, A, Patat, F, Pignata, G, Podsiadlowski, P, Pumo, ML, Prentice, SJ, Rau, A, Razza, A, Rest, A, Reynolds, T, Roy, R, Ruiter, AJ, Rybicki, KA, Salmon, L, Schady, P, Schultz, ASB, Schweyer, T, Seitenzahl, IR, Smith, M, Sollerman, J, Stalder, B, Stubbs, CW, Sullivan, M, Szegedi, H, Taddia, F, Taubenberger, S, Terreran, G, Van Soelen, B, Vos, J, Wainscoat, RJ, Walton, NA, Waters, C, Weiland, H, Willman, M, Wiseman, P, Wright, DE, Wyrzykowski, L & Yaron, O 2017, 'A kilonova as the electromagnetic counterpart to a gravitational-wave source', Nature, vol. 551, n.º 7678, pp. 75-79. https://doi.org/10.1038/nature24303

A kilonova as the electromagnetic counterpart to a gravitational-wave source. / Smartt, S. J.; Chen, T. W.; Jerkstrand, A.; Coughlin, M.; Kankare, E.; Sim, S. A.; Fraser, M.; Inserra, C.; Maguire, K.; Chambers, K. C.; Huber, M. E.; Krühler, T.; Leloudas, G.; Magee, M.; Shingles, L. J.; Smith, K. W.; Young, D. R.; Tonry, J.; Kotak, R.; Gal-Yam, A.; Lyman, J. D.; Homan, D. S.; Agliozzo, C.; Anderson, J. P.; Angus, C. R.; Ashall, C.; Barbarino, C.; Bauer, F. E.; Berton, M.; Botticella, M. T.; Bulla, M.; Bulger, J.; Cannizzaro, G.; Cano, Z.; Cartier, R.; Cikota, A.; Clark, P.; De Cia, A.; Della Valle, M.; Denneau, L.; Dennefeld, M.; Dessart, L.; Dimitriadis, G.; Elias-Rosa, N.; Firth, R. E.; Flewelling, H.; Flörs, A.; Franckowiak, A.; Frohmaier, C.; Galbany, L.; González-Gaitán, S.; Greiner, J.; Gromadzki, M.; Nicuesa Guelbenzu, A.; Gutiérrez, C. P.; Hamanowicz, A.; Hanlon, L.; Harmanen, J.; Heintz, K. E.; Heinze, A.; Hernandez, M. S.; Hodgkin, S. T.; Hook, I. M.; Izzo, L.; James, P. A.; Jonker, P. G.; Kerzendorf, W. E.; Klose, S.; Kostrzewa-Rutkowska, Z.; Kowalski, M.; Kromer, M.; Kuncarayakti, H.; Lawrence, A.; Lowe, T. B.; Magnier, E. A.; Manulis, I.; Martin-Carrillo, A.; Mattila, S.; McBrien, O.; Müller, A.; Nordin, J.; O'Neill, D.; Onori, F.; Palmerio, J. T.; Pastorello, A.; Patat, F.; Pignata, G.; Podsiadlowski, P.; Pumo, M. L.; Prentice, S. J.; Rau, A.; Razza, A.; Rest, A.; Reynolds, T.; Roy, R.; Ruiter, A. J.; Rybicki, K. A.; Salmon, L.; Schady, P.; Schultz, A. S.B.; Schweyer, T.; Seitenzahl, I. R.; Smith, M.; Sollerman, J.; Stalder, B.; Stubbs, C. W.; Sullivan, M.; Szegedi, H.; Taddia, F.; Taubenberger, S.; Terreran, G.; Van Soelen, B.; Vos, J.; Wainscoat, R. J.; Walton, N. A.; Waters, C.; Weiland, H.; Willman, M.; Wiseman, P.; Wright, D. E.; Wyrzykowski, L.; Yaron, O.

En: Nature, Vol. 551, N.º 7678, 02.11.2017, p. 75-79.

Resultado de la investigación: Article

TY - JOUR

T1 - A kilonova as the electromagnetic counterpart to a gravitational-wave source

AU - Smartt, S. J.

AU - Chen, T. W.

AU - Jerkstrand, A.

AU - Coughlin, M.

AU - Kankare, E.

AU - Sim, S. A.

AU - Fraser, M.

AU - Inserra, C.

AU - Maguire, K.

AU - Chambers, K. C.

AU - Huber, M. E.

AU - Krühler, T.

AU - Leloudas, G.

AU - Magee, M.

AU - Shingles, L. J.

AU - Smith, K. W.

AU - Young, D. R.

AU - Tonry, J.

AU - Kotak, R.

AU - Gal-Yam, A.

AU - Lyman, J. D.

AU - Homan, D. S.

AU - Agliozzo, C.

AU - Anderson, J. P.

AU - Angus, C. R.

AU - Ashall, C.

AU - Barbarino, C.

AU - Bauer, F. E.

AU - Berton, M.

AU - Botticella, M. T.

AU - Bulla, M.

AU - Bulger, J.

AU - Cannizzaro, G.

AU - Cano, Z.

AU - Cartier, R.

AU - Cikota, A.

AU - Clark, P.

AU - De Cia, A.

AU - Della Valle, M.

AU - Denneau, L.

AU - Dennefeld, M.

AU - Dessart, L.

AU - Dimitriadis, G.

AU - Elias-Rosa, N.

AU - Firth, R. E.

AU - Flewelling, H.

AU - Flörs, A.

AU - Franckowiak, A.

AU - Frohmaier, C.

AU - Galbany, L.

AU - González-Gaitán, S.

AU - Greiner, J.

AU - Gromadzki, M.

AU - Nicuesa Guelbenzu, A.

AU - Gutiérrez, C. P.

AU - Hamanowicz, A.

AU - Hanlon, L.

AU - Harmanen, J.

AU - Heintz, K. E.

AU - Heinze, A.

AU - Hernandez, M. S.

AU - Hodgkin, S. T.

AU - Hook, I. M.

AU - Izzo, L.

AU - James, P. A.

AU - Jonker, P. G.

AU - Kerzendorf, W. E.

AU - Klose, S.

AU - Kostrzewa-Rutkowska, Z.

AU - Kowalski, M.

AU - Kromer, M.

AU - Kuncarayakti, H.

AU - Lawrence, A.

AU - Lowe, T. B.

AU - Magnier, E. A.

AU - Manulis, I.

AU - Martin-Carrillo, A.

AU - Mattila, S.

AU - McBrien, O.

AU - Müller, A.

AU - Nordin, J.

AU - O'Neill, D.

AU - Onori, F.

AU - Palmerio, J. T.

AU - Pastorello, A.

AU - Patat, F.

AU - Pignata, G.

AU - Podsiadlowski, P.

AU - Pumo, M. L.

AU - Prentice, S. J.

AU - Rau, A.

AU - Razza, A.

AU - Rest, A.

AU - Reynolds, T.

AU - Roy, R.

AU - Ruiter, A. J.

AU - Rybicki, K. A.

AU - Salmon, L.

AU - Schady, P.

AU - Schultz, A. S.B.

AU - Schweyer, T.

AU - Seitenzahl, I. R.

AU - Smith, M.

AU - Sollerman, J.

AU - Stalder, B.

AU - Stubbs, C. W.

AU - Sullivan, M.

AU - Szegedi, H.

AU - Taddia, F.

AU - Taubenberger, S.

AU - Terreran, G.

AU - Van Soelen, B.

AU - Vos, J.

AU - Wainscoat, R. J.

AU - Walton, N. A.

AU - Waters, C.

AU - Weiland, H.

AU - Willman, M.

AU - Wiseman, P.

AU - Wright, D. E.

AU - Wyrzykowski, L.

AU - Yaron, O.

PY - 2017/11/2

Y1 - 2017/11/2

N2 - Gravitational waves were discovered with the detection of binary black-hole mergers1 and they should also be detectable from lowermass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova2-5. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate6. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst7,8. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.

AB - Gravitational waves were discovered with the detection of binary black-hole mergers1 and they should also be detectable from lowermass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova2-5. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate6. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst7,8. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.

UR - http://www.scopus.com/inward/record.url?scp=85032825905&partnerID=8YFLogxK

U2 - 10.1038/nature24303

DO - 10.1038/nature24303

M3 - Article

AN - SCOPUS:85032825905

VL - 551

SP - 75

EP - 79

JO - Nature

JF - Nature

SN - 0028-0836

IS - 7678

ER -

Smartt SJ, Chen TW, Jerkstrand A, Coughlin M, Kankare E, Sim SA y otros. A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature. 2017 nov 2;551(7678):75-79. https://doi.org/10.1038/nature24303