A Hand Gesture Recognition System Using EMG and Reinforcement Learning: A Q-Learning Approach

Juan Pablo Vásconez, Lorena Isabel Barona López, Ángel Leonardo Valdivieso Caraguay, Patricio J. Cruz, Robin Álvarez, Marco E. Benalcázar

Producción científica: Contribución a los tipos de informe/libroContribución a la conferenciarevisión exhaustiva

8 Citas (Scopus)

Resumen

Hand gesture recognition (HGR) based on electromyography (EMG) has been a research topic of great interest in recent years. Designing an HGR to be robust enough to the variation of EMGs is a challenging problem and most of the existing studies have explored supervised learning to design HGRs methods. However, reinforcement learning, which allows an agent to learn online while taking EMG samples, has barely been investigated. In this work, we propose a HGR system composed of the following stages: pre-processing, feature extraction, classification and post-processing. For the classification stage, we use Q-learning to train an agent that learns to classify and recognize EMGs from five gestures of interest. At each step of training, the agent interacts with a defined environment, obtaining thus a reward for the action taken in the current state and observing the next state. We performed experiments using a public EMGs dataset, and the results were evaluated for user-specific HGR models by using a method that is robust to the rotations of the EMG bracelet device. The results showed that the classification accuracy reach up to 90.78% and the recognition up to 87.51% for two different test-sets for 612 users in total. The results obtained in this work show that reinforcement learning methods such as Q-learning can learn a policy from online experiences to solve both the hand gesture classification and the recognition problem based on EMGs.

Idioma originalInglés
Título de la publicación alojadaArtificial Neural Networks and Machine Learning – ICANN 2021 - 30th International Conference on Artificial Neural Networks, Proceedings
EditoresIgor Farkaš, Paolo Masulli, Sebastian Otte, Stefan Wermter
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas580-591
Número de páginas12
ISBN (versión impresa)9783030863791
DOI
EstadoPublicada - 2021
Publicado de forma externa
Evento30th International Conference on Artificial Neural Networks, ICANN 2021 - Virtual, Online
Duración: 14 sep. 202117 sep. 2021

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen12894 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia30th International Conference on Artificial Neural Networks, ICANN 2021
CiudadVirtual, Online
Período14/09/2117/09/21

Áreas temáticas de ASJC Scopus

  • Ciencia computacional teórica
  • Ciencia de la Computación General

Huella

Profundice en los temas de investigación de 'A Hand Gesture Recognition System Using EMG and Reinforcement Learning: A Q-Learning Approach'. En conjunto forman una huella única.

Citar esto