A causal modelling for desertion and graduation prediction using Bayesian networks: A Chilean case

Billy Peralta, Jorge Salazar, Marcos Levano, Orietta Nicolis

Resultado de la investigación: Contribución a los tipos de informe/libroContribución a la conferenciarevisión exhaustiva

Resumen

Currently the high rates of university dropouts and low graduation are social problems that are very relevant in Chilean society. Predicting these events can allow institutions to take action to avoid them. The typical prediction models based on machine learning are capable of making reliable predictions, however they do not allow to understand the causality that originates both events, which could help to take better actions. This work proposes to find, analyze and weigh the causal relationships that allow predicting whether a student will drop out or will graduate according to the information available using a framework with Bayesian networks. The study is based on real data from the Universidad Católica de Temuco in Chile collected over three years. The results reveal variables and relevant relationships according the opinion of human experts, which suggest that the proposed model provides better capabilities to represent the causality of university dropout and graduation. From the results we believe that it is feasible to design better retention policies and timely degree at a university.

Idioma originalInglés
Título de la publicación alojada2021 IEEE International Conference on Automation/24th Congress of the Chilean Association of Automatic Control, ICA-ACCA 2021
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781665401272
DOI
EstadoPublicada - 22 mar 2021
Evento2021 IEEE International Conference on Automation/24th Congress of the Chilean Association of Automatic Control, ICA-ACCA 2021 - Valparaiso, Chile
Duración: 22 mar 202126 mar 2021

Serie de la publicación

Nombre2021 IEEE International Conference on Automation/24th Congress of the Chilean Association of Automatic Control, ICA-ACCA 2021

Conferencia

Conferencia2021 IEEE International Conference on Automation/24th Congress of the Chilean Association of Automatic Control, ICA-ACCA 2021
País/TerritorioChile
CiudadValparaiso
Período22/03/2126/03/21

Áreas temáticas de ASJC Scopus

  • Informática aplicada
  • Seguridad, riesgos, fiabilidad y calidad
  • Control y optimización
  • Informática aplicada a la salud
  • Redes de ordenadores y comunicaciones

Huella

Profundice en los temas de investigación de 'A causal modelling for desertion and graduation prediction using Bayesian networks: A Chilean case'. En conjunto forman una huella única.

Citar esto