7D bosonic higher spin gauge theory: Symmetry algebra and linearized constraints

E. Sezgin, P. Sundell

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

49 Citas (Scopus)


We construct the minimal bosonic higher spin extension of the 7D AdS algebra SO(6, 2), which we call hs(8*). The generators, which have spin s = 1, 3, 5,..., are realized as monomials in Grassmann even spinor oscillators. Irreducibility, in the form of tracelessness, is achieved by modding out an infinite-dimensional ideal containing the traces. In this a key role is played by the tree bilinear traces which form an SU(2)K algebra. We show that gauging of hs(8*) yields a spectrum of physical fields with spin s = 0, 2, 4,... which make up a UIR of hs(8*) isomorphic to the symmetric tensor product of two 6D scalar doubletons. The scalar doubleton is the unique SU(2)K invariant 6D doubleton. The spin s ≥ 2 sector comes from an hs(8*)-valued one-form which also contains the auxiliary gauge fields required for writing the curvature constraints in covariant form. The physical spin s = 0 field arises in a separate zero-form in a 'quasi-adjoint' representation of hs(8*). This zero-form also contains the spin s ≥ 2 Weyl tensors, i.e., the curvatures which are non-vanishing on-shell. We suggest that the hs(8*) gauge theory describes the minimal bosonic, massless truncation of M-theory on AdS7 × S4 in an unbroken phase where the holographic dual is given by N free (2, 0) tensor multiplets for large N.

Idioma originalInglés
Páginas (desde-hasta)120-140
Número de páginas21
PublicaciónNuclear Physics B
EstadoPublicada - 8 jul. 2002

Áreas temáticas de ASJC Scopus

  • Física nuclear y de alta energía


Profundice en los temas de investigación de '7D bosonic higher spin gauge theory: Symmetry algebra and linearized constraints'. En conjunto forman una huella única.

Citar esto