2D sigma models and differential Poisson algebras

Cesar Arias, Nicolas Boulanger, Per Sundell, Alexander Torres-Gomez

Resultado de la investigación: Contribución a una revistaArtículo

4 Citas (Scopus)

Resumen

Abstract: We construct a two-dimensional topological sigma model whose target space is endowed with a Poisson algebra for differential forms. The model consists of an equal number of bosonic and fermionic fields of worldsheet form degrees zero and one. The action is built using exterior products and derivatives, without any reference to a worldsheet metric, and is of the covariant Hamiltonian form. The equations of motion define a universally Cartan integrable system. In addition to gauge symmetries, the model has one rigid nilpotent supersymmetry corresponding to the target space de Rham operator. The rigid and local symmetries of the action, respectively, are equivalent to the Poisson bracket being compatible with the de Rham operator and obeying graded Jacobi identities. We propose that perturbative quantization of the model yields a covariantized differential star product algebra of Kontsevich type. We comment on the resemblance to the topological A model.

Idioma originalInglés
Número de artículo95
Páginas (desde-hasta)1-18
Número de páginas18
PublicaciónJournal of High Energy Physics
Volumen2015
N.º8
DOI
EstadoPublicada - 1 ago 2015

Áreas temáticas de ASJC Scopus

  • Física nuclear y de alta energía

Huella Profundice en los temas de investigación de '2D sigma models and differential Poisson algebras'. En conjunto forman una huella única.

  • Citar esto