TY - JOUR
T1 - Why is phenyl azide so unreactive in [3 + 2] cycloaddition reactions? Demystifying Sustmann's paradigmatic parabola
AU - Domingo, Luis R.
AU - Ríos-Gutiérrez, Mar
AU - Pérez, Patricia
N1 - Publisher Copyright:
© 2023 The Royal Society of Chemistry.
PY - 2023/9/22
Y1 - 2023/9/22
N2 - The [3 + 2] cycloaddition (32CA) reactions of phenyl azide with a series of 25 ethylenes of different electronic activation have been studied within Molecular Electron Density Theory (MEDT) at the ωB97X-D/6-311G(d,p) computational level to understand the low reactivity of azides participating in 32CA reactions. Analysis of the reactivity indices allows characterizing phenyl azide as a moderate electrophile and a moderate nucleophile. The relative reaction rate constants kr of twelve selected 32CA reactions, together with the electrophilicity ω and nucleophilicity N indices of the corresponding ethylenes, allow us to classify these 32CA reactions into four groups: (i) group A, involving supernucleophilic ethylenes and displaying a kr > 104; (ii) group B, involving strained cyclic ethylenes and displaying a kr < 102; (iii) group C, involving strongly electrophilic ethylenes and displaying a kr ≤ 102, and (iv) group D, involving moderately electrophilic and nucleophilic ethylenes and displaying a kr < 2. These four groups are characterized in Sustmann's “parabolic correlation”, which results from an inaccurate interpretation of the reactivity of phenyl azide, which is not an “ambiphilic species” but rather a moderate electrophile that reacts efficiently only with supernucleophilic ethylenes in reverse electron density flux (REDF) zw-type 32CA reactions.
AB - The [3 + 2] cycloaddition (32CA) reactions of phenyl azide with a series of 25 ethylenes of different electronic activation have been studied within Molecular Electron Density Theory (MEDT) at the ωB97X-D/6-311G(d,p) computational level to understand the low reactivity of azides participating in 32CA reactions. Analysis of the reactivity indices allows characterizing phenyl azide as a moderate electrophile and a moderate nucleophile. The relative reaction rate constants kr of twelve selected 32CA reactions, together with the electrophilicity ω and nucleophilicity N indices of the corresponding ethylenes, allow us to classify these 32CA reactions into four groups: (i) group A, involving supernucleophilic ethylenes and displaying a kr > 104; (ii) group B, involving strained cyclic ethylenes and displaying a kr < 102; (iii) group C, involving strongly electrophilic ethylenes and displaying a kr ≤ 102, and (iv) group D, involving moderately electrophilic and nucleophilic ethylenes and displaying a kr < 2. These four groups are characterized in Sustmann's “parabolic correlation”, which results from an inaccurate interpretation of the reactivity of phenyl azide, which is not an “ambiphilic species” but rather a moderate electrophile that reacts efficiently only with supernucleophilic ethylenes in reverse electron density flux (REDF) zw-type 32CA reactions.
UR - http://www.scopus.com/inward/record.url?scp=85174306297&partnerID=8YFLogxK
U2 - 10.1039/d3qo00811h
DO - 10.1039/d3qo00811h
M3 - Article
AN - SCOPUS:85174306297
SN - 2052-4110
VL - 10
SP - 5579
EP - 5591
JO - Organic Chemistry Frontiers
JF - Organic Chemistry Frontiers
IS - 22
ER -