Visual/infrared interferometry of orion trapezium stars: Preliminary dynamical orbit and aperture synthesis imaging of the θ1 Orionis C system

S. Kraus, Y. Y. Balega, J. P. Berger, K. H. Hofmann, R. Millan-Gabet, J. D. Monnier, K. Ohnaka, E. Pedretti, Th Preibisch, D. Schertl, F. P. Schloerb, W. A. Traub, G. Weigelt

Research output: Contribution to journalArticlepeer-review

70 Citations (Scopus)


Context. Located in the Orion Trapezium cluster, θ1Ori C is one of the youngest and nearest high-mass stars (O5-O7) known. Besides its unique properties as a magnetic rotator, the system is also known to be a close binary. Aims. By tracing its orbital motion, we aim to determine the orbit and dynamical mass of the system, yielding a characterization of the individual components and, ultimately, also new constraints for stellar evolution models in the high-mass regime. Furthermore, a dynamical parallax can be derived from the orbit, providing an independent estimate for the distance of the Trapezium cluster. Methods. Using new multi-epoch visual and near-infrared bispectrum speckle interferometric observations obtained at the BTA 6 m telescope, and IOTA near-infrared long-baseline interferometry, we traced the orbital motion of the θ1Ori C components over the interval 1997.8 to 2005.9, covering a significant arc of the orbit. Besides fitting the relative position and the flux ratio, we applied aperture synthesis techniques to our IOTA data to reconstruct a model-independent image of the θ1Ori C binary system. Results. The orbital solutions suggest a highly eccentricity (e ≈ 0.91) and short-period (P ≈ 10.9 yrs) orbit. As the current astrometric data only allows rather weak constraints on the total dynamical mass, we present the two best-fit orbits. Of these two, the one implying a system mass of 48 M and a distance of 434 pc to the Trapezium cluster can be favored. When also taking the measured flux ratio and the derived location in the HR-diagram into account, we find good agreement for all observables, assuming a spectral type of O5.5 for θ1Ori C1 (M = 34.0 M , Teff = 39900 K) and O9.5 for C2 (M = 15.5 M , Teff = 31 900 K). Using IOTA, we also obtained first interferometric observations on θ1Ori D, finding some evidence for a resolved structure, maybe by a faint, close companion. Conclusions. We find indications that the companion C2 is massive itself, which makes it likely that its contribution to the intense UV radiation field of the Trapezium cluster is non-negligible. Furthermore, the high eccentricity of the preliminary orbit solution predicts a very small physical separation during periastron passage (∼1.5 AU, next passage around 2007.5), suggesting strong wind-wind interaction between the two O stars.

Original languageEnglish
Pages (from-to)649-659
Number of pages11
JournalAstronomy and Astrophysics
Issue number2
Publication statusPublished - May 2007
Externally publishedYes


  • θ Orionis D
  • Stars: binaries: Close
  • Stars: fundamental parameters
  • Stars: individual: θ Orionis C
  • Stars: pre-main sequence
  • Techniques: interferometric

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'Visual/infrared interferometry of orion trapezium stars: Preliminary dynamical orbit and aperture synthesis imaging of the θ<sup>1</sup> Orionis C system'. Together they form a unique fingerprint.

Cite this