Variable Exponent Sobolev Spaces and Regularity of Domains

Przemysław Górka, Nijjwal Karak, Daniel J. Pons

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

We study the embeddings of variable exponent Sobolev and Hölder function spaces over Euclidean domains, providing necessary and/or sufficient conditions on the regularity of the exponent and/or the domain in various contexts. Concerning the exponent, the relevant condition is log-Hölder continuity; concerning the domain, the relevant condition is the measure density condition.

Original languageEnglish
JournalJournal of Geometric Analysis
DOIs
Publication statusAccepted/In press - 2020

Keywords

  • Measure density condition
  • Sobolev embedding
  • Sobolev spaces

ASJC Scopus subject areas

  • Geometry and Topology

Fingerprint

Dive into the research topics of 'Variable Exponent Sobolev Spaces and Regularity of Domains'. Together they form a unique fingerprint.

Cite this