Abstract
Vibrio anguillarum is a pathogen for several fish and shellfish species. Its ecology is influenced by diverse factors, including bacteriophages. Here, we identify and characterize a new temperate bacteriophage (Valp1) of V. anguillarum. Valp1 is a myovirus with a 60 nm head and a 90 nm contractile tail. Its double-stranded DNA genome of 42,988 bp contains 68 genes, including a protelomerase gene, typical of telomeric phages. Valp1 inhibits the growth of the virulent strain of V. anguillarum PF4, while the derived lysogenic strain P1.1 presents a slight reduction in its growth but is not affected by the presence of Valp1. Both strains present similar virulence in a larval zebrafish (Danio rerio) model, and only slight differences have been observed in their biochemical profile. Co-culture assays reveal that PF4 and P1.1 can coexist for 10 h in the presence of naturally induced Valp1, with the proportion of PF4 ranging between 28% and 1.6%. By the end of the assay, the phage reached a concentration of ~108 PFU/mL, and all the non-lysogenic PF4 strains were resistant to Valp1. This equilibrium was maintained even after five successive subcultures, suggesting the existence of a coexistence mechanism between the lysogenic and non-lysogenic populations of V. anguillarum in conjunction with the phage Valp1.
Original language | English |
---|---|
Article number | 285 |
Journal | Pathogens |
Volume | 13 |
Issue number | 4 |
DOIs | |
Publication status | Published - Apr 2024 |
Keywords
- bacteriophage
- phage
- telomeric phage
- Vibrio anguillarum
- vibriophage
- Vibro
ASJC Scopus subject areas
- Immunology and Allergy
- Molecular Biology
- General Immunology and Microbiology
- Microbiology (medical)
- Infectious Diseases