Toxicity Mechanisms of Copper Nanoparticles and Copper Surfaces on Bacterial Cells and Viruses

Javiera Ramos-Zúñiga, Nicolás Bruna, José M. Pérez-Donoso

Research output: Contribution to journalReview articlepeer-review

37 Citations (Scopus)

Abstract

Copper is a metal historically used to prevent infections. One of the most relevant challenges in modern society are infectious disease outbreaks, where copper-based technologies can play a significant role. Currently, copper nanoparticles and surfaces are the most common antimicrobial copper-based technologies. Despite the widespread use of copper on nanoparticles and surfaces, the toxicity mechanism(s) explaining their unique antimicrobial properties are not entirely known. In general, toxicity effects described in bacteria and fungi involve the rupture of membranes, accumulation of ions inside the cell, protein inactivation, and DNA damage. A few studies have associated Cu-toxicity with ROS production and genetic material degradation in viruses. Therefore, understanding the mechanisms of the toxicity of copper nanoparticles and surfaces will contribute to developing and implementing efficient antimicrobial technologies to combat old and new infectious agents that can lead to disease outbreaks such as COVID-19. This review summarizes the current knowledge regarding the microbial toxicity of copper nanoparticles and surfaces and the gaps in this knowledge. In addition, we discuss potential applications derived from discovering new elements of copper toxicity, such as using different molecules or modifications to potentiate toxicity or antimicrobial specificity.

Original languageEnglish
Article number10503
JournalInternational Journal of Molecular Sciences
Volume24
Issue number13
DOIs
Publication statusPublished - Jul 2023

Keywords

  • antimicrobial agent
  • antimicrobial copper
  • antiviral agent
  • copper mechanisms
  • copper nanoparticles
  • copper toxicity

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Toxicity Mechanisms of Copper Nanoparticles and Copper Surfaces on Bacterial Cells and Viruses'. Together they form a unique fingerprint.

Cite this