The Lyα Reference Sample. XIV. Lyα Imaging of 45 Low-redshift Star-forming Galaxies and Inferences on Global Emission

Jens Melinder, Göran Östlin, Matthew Hayes, Armin Rasekh, J. Miguel Mas-Hesse, John M. Cannon, Daniel Kunth, Peter Laursen, Axel Runnholm, E. Christian Herenz, Matteo Messa, Daniel Schaerer, Anne Verhamme, T. Emil Rivera-Thorsen, Lucia Guaita, Thomas Marquart, Johannes Puschnig, Alexandra Le Reste, Andreas Sandberg, Emily FreelandJoanna Bridge

Research output: Contribution to journalArticlepeer-review

Abstract

We present Lyα imaging of 45 low-redshift star-forming galaxies observed with the Hubble Space Telescope. The galaxies have been selected to have moderate to high star formation rates (SFRs) using far-ultraviolet (FUV) luminosity and Hα equivalent width criteria, but no constraints on Lyα luminosity. We employ a pixel stellar continuum fitting code to obtain accurate continuum-subtracted Lyα, Hα, and Hβ maps. We find that Lyα is less concentrated than FUV and optical line emission in almost all galaxies with significant Lyα emission. We present global measurements of Lyα and other quantities measured in apertures designed to capture all of the Lyα emission. We then show how the escape fraction of Lyα relates to a number of other measured quantities (mass, metallicity, star formation, ionization parameter, and extinction). We find that the escape fraction is strongly anticorrelated with nebular and stellar extinction, weakly anticorrelated with stellar mass, but no conclusive evidence for correlations with other quantities. We show that Lyα escape fractions are inconsistent with common dust extinction laws, and discuss how a combination of radiative transfer effects and clumpy dust models can help resolve the discrepancies. We present an SFR calibration based on Lyα luminosity, where the equivalent width of Lyα is used to correct for nonunity escape fraction, and show that this relation provides a reasonably accurate SFR estimate. We also show stacked growth curves of Lyα for the galaxies that can be used to find aperture loss fractions at a given physical radius.

Original languageEnglish
Article number15
JournalAstrophysical Journal, Supplement Series
Volume266
Issue number1
DOIs
Publication statusPublished - 1 May 2023

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'The Lyα Reference Sample. XIV. Lyα Imaging of 45 Low-redshift Star-forming Galaxies and Inferences on Global Emission'. Together they form a unique fingerprint.

Cite this