Symmetry and thermodynamics of tellurium vacancies in cadmium telluride

E. Menéndez-Proupin, M. Casanova-Páez, A. L. Montero-Alejo, M. A. Flores, W. Orellana

Research output: Contribution to journalArticle


The equilibrium geometries and thermodynamic properties of anion vacancies in cadmium telluride, as predicted by density functional theory, are revisited using semilocal and hybrid density functionals. We find that stable configurations in different charge states can only be found after a systematic search considering several starting geometries. The stable charge states, 0 and 2+, display closed-shell electronic configurations, without deep bandgap levels. The 2+ charge state has a T d symmetry with an outward relaxation, while the neutral state is a mixture of configurations with C 2v and C 3v symmetries, both with the same energy and a negligible energy barrier. Therefore, the neutral charge state presents an effective T d symmetry. Configurations with different symmetries, e.g., D 2d , can exist as metastable states. We show that certain configurations may seem falsely stable due to several facts: the bandgap error of generalized gradient approximation, the k-point sampling used in small supercells, or the use of a restricted set of starting geometries. We believe that the HSE06 hybrid functional allows to obtain accurate formation energies and geometries. We analyze the effect of the spin-orbit coupling and GW quasiparticle corrections to the HSE06 results, and find no qualitative differences. The spin-orbit coupling and GW corrections to the HSE06 energies partially cancel each other. Finally, we investigate the divacancy V Cd V Te . The obtained formation energies suggest that isolated tellurium vacancies in neutral charge state can be found only in Te-poor growth conditions, coexisting with divacancies.

Original languageEnglish
Pages (from-to)81-87
Number of pages7
JournalPhysica B: Condensed Matter
Publication statusPublished - 1 Sep 2019


  • Cadmium telluride
  • CdTe
  • Defects
  • Vacancy

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Symmetry and thermodynamics of tellurium vacancies in cadmium telluride'. Together they form a unique fingerprint.

  • Cite this